Cargando…

Geometric Algebra for Computer Graphics

Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vince, John (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-997-2
003 DE-He213
005 20220119212529.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781846289972  |9 978-1-84628-997-2 
024 7 |a 10.1007/978-1-84628-997-2  |2 doi 
050 4 |a T385 
072 7 |a UML  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UML  |2 thema 
082 0 4 |a 006.6  |2 23 
100 1 |a Vince, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Algebra for Computer Graphics  |h [electronic resource] /  |c by John Vince. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 256 p. 125 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Elementary Algebra -- Complex Algebra -- Vector Algebra -- Quaternion Algebra -- Geometric Conventions -- Geometric Algebra -- The Geometric Product -- Reflections and Rotations -- Geometric Algebra and Geometry -- Conformal Geometry -- Applications of Geometric Algebra -- Programming Tools for Geometric Algebra -- Conclusion. 
520 |a Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this algebra, which uses a simple and consistent notation to describe vectors and their products. John Vince (best-selling author of a number of books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') tackles this new subject in his usual inimitable style, and provides an accessible and very readable introduction. The first five chapters review the algebras of real numbers, complex numbers, vectors, and quaternions and their associated axioms, together with the geometric conventions employed in analytical geometry. As well as putting geometric algebra into its historical context, John Vince provides chapters on Grassmann's outer product and Clifford's geometric product, followed by the application of geometric algebra to reflections, rotations, lines, planes and their intersection. The conformal model is also covered, where a 5D Minkowski space provides an unusual platform for unifying the transforms associated with 3D Euclidean space. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to geometric algebra for computer graphics. 
650 0 |a Computer graphics. 
650 0 |a Algebraic geometry. 
650 0 |a Computer science-Mathematics. 
650 0 |a Geometry. 
650 1 4 |a Computer Graphics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848006737 
776 0 8 |i Printed edition:  |z 9781849966979 
776 0 8 |i Printed edition:  |z 9781846289965 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-997-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)