Cargando…

Multimedia Data Mining and Knowledge Discovery

Multimedia information is ubiquitous and essential in many applications, and repositories of multimedia are numerous and extremely large. Consequently, researchers and professionals need new techniques and tools for extracting the hidden, useful knowledge embedded within multimedia collections, ther...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Petrushin, Valery A. (Editor ), Khan, Latifur (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-799-2
003 DE-He213
005 20220118121222.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846287992  |9 978-1-84628-799-2 
024 7 |a 10.1007/978-1-84628-799-2  |2 doi 
050 4 |a QA76.76.A65 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UX  |2 thema 
082 0 4 |a 005.3  |2 23 
245 1 0 |a Multimedia Data Mining and Knowledge Discovery  |h [electronic resource] /  |c edited by Valery A. Petrushin, Latifur Khan. 
250 |a 1st ed. 2007. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2007. 
300 |a XXV, 521 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a into Multimedia Data Mining and Knowledge Discovery -- Multimedia Data Mining: An Overview -- Multimedia Data Exploration and Visualization -- A New Hierarchical Approach for Image Clustering -- Multiresolution Clustering of Time Series and Application to Images -- Mining Rare and Frequent Events in Multi-camera Surveillance Video -- Density-Based Data Analysis and Similarity Search -- Feature Selection for Classification of Variable Length Multiattribute Motions -- Multimedia Data Indexing and Retrieval -- FAST: Fast and Semantics-Tailored Image Retrieval -- New Image Retrieval Principle: Image Mining and Visual Ontology -- Visual Alphabets: Video Classification by End Users -- Multimedia Data Modeling and Evaluation -- Cognitively Motivated Novelty Detection in Video Data Streams -- Video Event Mining via Multimodal Content Analysis and Classification -- Exploiting Spatial Transformations for Identifying Mappings in Hierarchical Media Data -- A Novel Framework for Semantic Image Classification and Benchmark Via Salient Objects -- Extracting Semantics Through Dynamic Context -- Mining Image Content by Aligning Entropies with an Exemplar -- More Efficient Mining Over Heterogeneous Data Using Neural Expert Networks -- A Data Mining Approach to Expressive Music Performance Modeling -- Applications and Case Studies -- Supporting Virtual Workspace Design Through Media Mining and Reverse Engineering -- A Time-Constrained Sequential Pattern Mining for Extracting Semantic Events in Videos -- Multiple-Sensor People Localization in an Office Environment -- Multimedia Data Mining Framework for Banner Images -- Analyzing User's Behavior on a Video Database -- On SVD-Free Latent Semantic Indexing for Iris Recognition of Large Databases -- Mining Knowledge in Computer Tomography Image Databases. 
520 |a Multimedia information is ubiquitous and essential in many applications, and repositories of multimedia are numerous and extremely large. Consequently, researchers and professionals need new techniques and tools for extracting the hidden, useful knowledge embedded within multimedia collections, thereby helping them discover relationships between the various elements and using this knowledge in decision-making applications. Multimedia Data Mining and Knowledge Discovery, assembling the work of leading academic and professional/industrial researchers worldwide, provides an overview of the current state-of-the-art in the field of multimedia data mining and knowledge discovery, and discusses the variety of hot topics in multimedia data mining research. Consisting of an introductory section and four topical parts, the book describes the objectives and current tendencies in multimedia data mining research and their applications. Each part contains an overview of its chapters and leads the reader with a structured approach through the diverse subjects in the field. Topics and Features: • Features a comprehensive introduction to multimedia data mining and its relevance today • Presents a global perspective of the field and its various components • Provides broad, yet thorough and detailed coverage of the subject • Numerous chapters reference websites with supplementary materials and demonstrations • Explores multimedia data exploration, multimedia data modeling and evaluation, and visualization • Offers an entire part devoted to applications and case studies Written with graduate students in mind, this much needed comprehensive survey of the current state of multimedia data mining and knowledge discovery will also serve as a valuable resource for researchers with interests in multimedia data mining, summarization, indexing, and retrieval. 
650 0 |a Application software. 
650 0 |a Database management. 
650 0 |a Multimedia systems. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Information retrieval. 
650 0 |a Computer architecture. 
650 1 4 |a Computer and Information Systems Applications. 
650 2 4 |a Database Management. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Data Storage Representation. 
700 1 |a Petrushin, Valery A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Khan, Latifur.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848005242 
776 0 8 |i Printed edition:  |z 9781846284366 
776 0 8 |i Printed edition:  |z 9781447160137 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-799-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)