Cargando…

Stochastic Calculus for Fractional Brownian Motion and Applications

Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefore...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Biagini, Francesca (Autor), Hu, Yaozhong (Autor), Øksendal, Bernt (Autor), Zhang, Tusheng (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Probability and Its Applications
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-797-8
003 DE-He213
005 20220114130802.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781846287978  |9 978-1-84628-797-8 
024 7 |a 10.1007/978-1-84628-797-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Biagini, Francesca.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Calculus for Fractional Brownian Motion and Applications  |h [electronic resource] /  |c by Francesca Biagini, Yaozhong Hu, Bernt Øksendal, Tusheng Zhang. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XII, 330 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications 
505 0 |a Fractional Brownian motion -- Intrinsic properties of the fractional Brownian motion -- Stochastic calculus -- Wiener and divergence-type integrals for fractional Brownian motion -- Fractional Wick Itô Skorohod (fWIS) integrals for fBm of Hurst index H >1/2 -- WickItô Skorohod (WIS) integrals for fractional Brownian motion -- Pathwise integrals for fractional Brownian motion -- A useful summary -- Applications of stochastic calculus -- Fractional Brownian motion in finance -- Stochastic partial differential equations driven by fractional Brownian fields -- Stochastic optimal control and applications -- Local time for fractional Brownian motion. 
520 |a Fractional Brownian motion (fBm) has been widely used to model a number of phenomena in diverse fields from biology to finance. This huge range of potential applications makes fBm an interesting object of study. fBm represents a natural one-parameter extension of classical Brownian motion therefore it is natural to ask if a stochastic calculus for fBm can be developed. This is not obvious, since fBm is neither a semimartingale (except when H = ½), nor a Markov process so the classical mathematical machineries for stochastic calculus are not available in the fBm case. Several approaches have been used to develop the concept of stochastic calculus for fBm. The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance. Aspects of the book will also be useful in other fields where fBm can be used as a model for applications. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Hu, Yaozhong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Øksendal, Bernt.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Tusheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848008939 
776 0 8 |i Printed edition:  |z 9781849969949 
776 0 8 |i Printed edition:  |z 9781852339968 
830 0 |a Probability and Its Applications 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-797-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)