Cargando…

Principles of Data Mining

Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bramer, Max (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Colección:Undergraduate Topics in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-766-4
003 DE-He213
005 20220113174418.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846287664  |9 978-1-84628-766-4 
024 7 |a 10.1007/978-1-84628-766-4  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
100 1 |a Bramer, Max.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Principles of Data Mining  |h [electronic resource] /  |c by Max Bramer. 
250 |a 1st ed. 2007. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2007. 
300 |a X, 344 p. 200 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
505 0 |a Data for Data Mining -- to Classification: Na¨ive Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Association Rule Mining I -- Association Rule Mining II -- Clustering -- Text Mining. 
520 |a Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. This book explains and explores the principal techniques of Data Mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples & explanations of the algorithms given. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help the general reader develop the necessary understanding to use commercial data mining packages discriminatingly, as well as enabling the advanced reader or academic researcher to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Computer science. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Database management. 
650 0 |a Artificial intelligence. 
650 0 |a Computer programming. 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Programming Techniques. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848006034 
776 0 8 |i Printed edition:  |z 9781846287657 
830 0 |a Undergraduate Topics in Computer Science,  |x 2197-1781 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-766-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)