Cargando…

Algebraic Methods for Nonlinear Control Systems

A self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. The most popular treatment of control for nonlinear systems is from the viewpoint of differential geometry yet this approach proves not to be the most natural when considering pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Conte, Giuseppe (Autor), Moog, Claude H. (Autor), Perdon, Anna Maria (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2007.
Edición:2nd ed. 2007.
Colección:Communications and Control Engineering,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-595-0
003 DE-He213
005 20220116013228.0
007 cr nn 008mamaa
008 100301s2007 xxk| s |||| 0|eng d
020 |a 9781846285950  |9 978-1-84628-595-0 
024 7 |a 10.1007/978-1-84628-595-0  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Conte, Giuseppe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Methods for Nonlinear Control Systems  |h [electronic resource] /  |c by Giuseppe Conte, Claude H. Moog, Anna Maria Perdon. 
250 |a 2nd ed. 2007. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications and Control Engineering,  |x 2197-7119 
505 0 |a Methodology -- Preliminaries -- Modeling -- Accessibility -- Observability -- Systems Structure and Inversion -- System Transformations -- Applications to Control Problems -- Input-output Linearization -- Noninteracting Control -- Input-state Linearization -- Disturbance Decoupling -- Model Matching -- Measured Output Feedback Control Problems. 
520 |a A self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. The most popular treatment of control for nonlinear systems is from the viewpoint of differential geometry yet this approach proves not to be the most natural when considering problems like dynamic feedback and realization. Professors Conte, Moog and Perdon develop an alternative linear-algebraic strategy based on the use of vector spaces over suitable fields of nonlinear functions. This algebraic perspective is complementary to, and parallel in concept with, its more celebrated differential-geometric counterpart. Algebraic Methods for Nonlinear Control Systems describes a wide range of results, some of which can be derived using differential geometry but many of which cannot. They include: • classical and generalized realization in the nonlinear context; • accessibility and observability recast within the linear-algebraic setting; • discussion and solution of basic feedback problems like input-to-output linearization, input-to-state linearization, non-interacting control and disturbance decoupling; • results for dynamic and static state and output feedback. Dynamic feedback and realization are shown to be dealt with and solved much more easily within the algebraic framework. Originally published as Nonlinear Control Systems, 1-85233-151-8, this second edition has been completely revised with new text - chapters on modeling and systems structure are expanded and that on output feedback added de novo - examples and exercises. The book is divided into two parts: the first being devoted to the necessary methodology and the second to an exposition of applications to control problems. 
650 0 |a Control engineering. 
650 0 |a Mathematical models. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a Algebras, Linear. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Applied Dynamical Systems. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Linear Algebra. 
700 1 |a Moog, Claude H.  |e author.  |0 (orcid)0000-0003-3803-8760  |1 https://orcid.org/0000-0003-3803-8760  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Perdon, Anna Maria.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849966252 
776 0 8 |i Printed edition:  |z 9781848005709 
776 0 8 |i Printed edition:  |z 9781846285943 
830 0 |a Communications and Control Engineering,  |x 2197-7119 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-595-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)