Cargando…

Practical Grey-box Process Identification Theory and Applications /

In process modelling, knowledge of the process under consideration is typically partial with significant unknown inputs (disturbances) to the model. Disturbances militate against the desirable trait of model reproducibility. "Grey-box" identification can assist, in these circumstances, by...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bohlin, Torsten P. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Advances in Industrial Control,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-403-8
003 DE-He213
005 20220117185026.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846284038  |9 978-1-84628-403-8 
024 7 |a 10.1007/1-84628-403-1  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Bohlin, Torsten P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Practical Grey-box Process Identification  |h [electronic resource] :  |b Theory and Applications /  |c by Torsten P. Bohlin. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a XX, 351 p. 186 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 2193-1577 
505 0 |a Theory of Grey-box Process Identification -- Prospects and Problems -- The MoCaVa Solution -- Tutorial on MoCaVa -- Preparations -- Calibration -- Some Modelling Support -- Case Studies -- Rinsing of the Steel Strip in a Rolling Mill -- Quality Prediction in a Cardboard Making Process. 
520 |a In process modelling, knowledge of the process under consideration is typically partial with significant unknown inputs (disturbances) to the model. Disturbances militate against the desirable trait of model reproducibility. "Grey-box" identification can assist, in these circumstances, by taking advantage of the two sources of information that may be available: any invariant prior knowledge and response data from experiments. Practical Grey-box Process Identification is a three-stranded response to the following questions which are frequently raised in connection with grey-box methods: • How much of my prior knowledge is useful and even correct in this environment? • Are my experimental data sufficient and relevant? • What do I do about the disturbances that I can't get rid of? • How do I know when my model is good enough? The first part of the book is a short review of the theoretical fundamentals of grey-box identification, focussing particularly on the theory necessary for the software presented in the second part. Part II puts the spotlight on MoCaVa, a MATLAB®-compatible software tool, downloadable from springeronline.com, for facilitating the procedure of effective grey-box identification. Part III demonstrates the application of MoCaVa using two case studies drawn from the paper and steel industries. More advanced theory is laid out in an appendix and the MoCaVa source code enables readers to expand on its capabilities to their own ends. Practical Grey-box Process Identification will be of great interest and help to process control engineers and researchers and the software show-cased here will be of much practical assistance to students doing project work in this field. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Computer simulation. 
650 0 |a Mathematical models. 
650 0 |a Computer-aided engineering. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848005143 
776 0 8 |i Printed edition:  |z 9781849965989 
776 0 8 |i Printed edition:  |z 9781846284021 
830 0 |a Advances in Industrial Control,  |x 2193-1577 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-84628-403-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)