Cargando…

Neural Networks in a Softcomputing Framework

Conventional model-based data processing methods are computationally expensive and require experts' knowledge for the modelling of a system; neural networks provide a model-free, adaptive, parallel-processing solution. Neural Networks in a Softcomputing Framework presents a thorough review of t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Du, Ke-Lin (Autor), Swamy, M.N.S (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-303-1
003 DE-He213
005 20220118103526.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846283031  |9 978-1-84628-303-1 
024 7 |a 10.1007/1-84628-303-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Du, Ke-Lin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks in a Softcomputing Framework  |h [electronic resource] /  |c by Ke-Lin Du, M.N.S. Swamy. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a L, 566 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Fundamentals of Machine Learning and Softcomputing -- Multilayer Perceptrons -- Hopfield Networks and Boltzmann Machines -- Competitive Learning and Clustering -- Radial Basis Function Networks -- Principal Component Analysis Networks -- Fuzzy Logic and Neurofuzzy Systems -- Evolutionary Algorithms and Evolving Neural Networks -- Discussion and Outlook. 
520 |a Conventional model-based data processing methods are computationally expensive and require experts' knowledge for the modelling of a system; neural networks provide a model-free, adaptive, parallel-processing solution. Neural Networks in a Softcomputing Framework presents a thorough review of the most popular neural-network methods and their associated techniques. This concise but comprehensive textbook provides a powerful and universal paradigm for information processing. Each chapter provides state-of-the-art descriptions of the important major research results of the respective neural-network methods. A range of relevant computational intelligence topics, such as fuzzy logic and evolutionary algorithms, are introduced. These are powerful tools for neural-network learning. Array signal processing problems are discussed in order to illustrate the applications of each neural-network model. Neural Networks in a Softcomputing Framework is an ideal textbook for graduate students and researchers in this field because in addition to grasping the fundamentals, they can discover the most recent advances in each of the popular models. The systematic survey of each neural-network model and the exhaustive list of references will enable researchers and students to find suitable topics for future research. The important algorithms outlined also make this textbook a valuable reference for scientists and practitioners working in pattern recognition, signal processing, speech and image processing, data analysis and artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a System theory. 
650 0 |a Computer science. 
650 0 |a Artificial intelligence. 
650 0 |a Signal processing. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Complex Systems. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Automated Pattern Recognition. 
700 1 |a Swamy, M.N.S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848004696 
776 0 8 |i Printed edition:  |z 9781849965743 
776 0 8 |i Printed edition:  |z 9781846283024 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-84628-303-5  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)