Cargando…

Optimized Bayesian Dynamic Advising Theory and Algorithms /

Written by one of the world's leading groups in the area of Bayesian identification, control and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Karny, Miroslav (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Advanced Information and Knowledge Processing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-254-6
003 DE-He213
005 20220118020924.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846282546  |9 978-1-84628-254-6 
024 7 |a 10.1007/1-84628-254-3  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
245 1 0 |a Optimized Bayesian Dynamic Advising  |h [electronic resource] :  |b Theory and Algorithms /  |c edited by Miroslav Karny. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a XVII, 529 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 2197-8441 
505 0 |a Underlying theory -- Approximate and feasible learning -- Approximate design -- Problem formulation -- Solution and principles of its approximation: learning part -- Solution and principles of its approximation: design part -- Learning with normal factors and components -- Design with normal mixtures -- Learning with Markov-chain factors and components -- Design with Markov-chain mixtures -- Sandwich BMTB for mixture initiation -- Mixed mixtures -- Applications of the advisory system -- Concluding remarks. 
520 |a Written by one of the world's leading groups in the area of Bayesian identification, control and decision making, this book provides the theoretical and algorithmic basis of optimized probabilistic advising. Starting from abstract ideas and formulations, and culminating in detailed algorithms, Optimized Bayesian Dynamic Advising comprises a unified treatment of an important problem of the design of advisory systems supporting supervisors of complex processes. It introduces the theoretical and algorithmic basis of developed advising, relying on novel and powerful combination black-box modeling by dynamic mixture models and fully probabilistic dynamic optimization. The proposed non-standard problem formulation and its solution mark a significant contribution to the design of anthropocentric automation systems. Written for a broad audience, including developers of algorithms and application engineers, researchers, lecturers and postgraduates, this book can be used as a reference tool, and an advanced text on Bayesian dynamic decision making. 
650 0 |a Computer science. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Artificial intelligence. 
650 0 |a Computer simulation. 
650 0 |a Pattern recognition systems. 
650 0 |a Mathematical statistics-Data processing. 
650 1 4 |a Models of Computation. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Statistics and Computing. 
700 1 |a Karny, Miroslav.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848008335 
776 0 8 |i Printed edition:  |z 9781852339289 
776 0 8 |i Printed edition:  |z 9781447156758 
830 0 |a Advanced Information and Knowledge Processing,  |x 2197-8441 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-84628-254-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)