Cargando…

Hyperbolic Geometry

The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperboli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Anderson, James W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2005.
Edición:2nd ed. 2005.
Colección:Springer Undergraduate Mathematics Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-220-1
003 DE-He213
005 20220119035526.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846282201  |9 978-1-84628-220-1 
024 7 |a 10.1007/1-84628-220-9  |2 doi 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
072 7 |a PBM  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Anderson, James W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hyperbolic Geometry  |h [electronic resource] /  |c by James W. Anderson. 
250 |a 2nd ed. 2005. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 276 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
505 0 |a The Basic Spaces -- The General Möbius Group -- Length and Distance in ? -- Planar Models of the Hyperbolic Plane -- Convexity, Area, and Trigonometry -- Nonplanar models. 
520 |a The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperbolic lines and develop a natural group of transformations preserving hyperbolic lines, and then study hyperbolic geometry as those quantities invariant under this group of transformations. Topics covered include the upper half-plane model of the hyperbolic plane, Möbius transformations, the general Möbius group, and their subgroups preserving the upper half-plane, hyperbolic arc-length and distance as quantities invariant under these subgroups, the Poincaré disc model, convex subsets of the hyperbolic plane, hyperbolic area, the Gauss-Bonnet formula and its applications. This updated second edition also features: an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; the hyperboloid model of the hyperbolic plane; brief discussion of generalizations to higher dimensions; many new exercises. The style and level of the book, which assumes few mathematical prerequisites, make it an ideal introduction to this subject and provides the reader with a firm grasp of the concepts and techniques of this beautiful part of the mathematical landscape. . 
650 0 |a Geometry. 
650 0 |a Mathematics. 
650 1 4 |a Geometry. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848008373 
776 0 8 |i Printed edition:  |z 9781852339340 
830 0 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-84628-220-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)