Cargando…

Support Vector Machines for Pattern Classification

I was shocked to see a student's report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abe, Shigeo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-219-5
003 DE-He213
005 20220117122007.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846282195  |9 978-1-84628-219-5 
024 7 |a 10.1007/1-84628-219-5  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Abe, Shigeo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Support Vector Machines for Pattern Classification  |h [electronic resource] /  |c by Shigeo Abe. 
250 |a 1st ed. 2005. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 344 p. 110 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Two-Class Support Vector Machines -- Multiclass Support Vector Machines -- Variants of Support Vector Machines -- Training Methods -- Feature Selection and Extraction -- Clustering -- Kernel-Based Methods -- Maximum-Margin Multilayer Neural Networks -- Maximum-Margin Fuzzy Classifiers -- Function Approximation. 
520 |a I was shocked to see a student's report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. This tendency was especially evident when the numbers of class data were small. I shifted my research e?orts from developing fuzzy classi?ers with high generalization ability to developing support vector machine-based classi?ers. This book focuses on the application of support vector machines to p- tern classi?cation. Speci?cally, we discuss the properties of support vector machines that are useful for pattern classi?cation applications, several m- ticlass models, and variants of support vector machines. To clarify their - plicability to real-world problems, we compare performance of most models discussed in the book using real-world benchmark data. Readers interested in the theoretical aspect of support vector machines should refer to books such as [109, 215, 256, 257]. 
650 0 |a Pattern recognition systems. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848008342 
776 0 8 |i Printed edition:  |z 9781849969635 
776 0 8 |i Printed edition:  |z 9781852339296 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/1-84628-219-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)