Fields and Galois Theory
The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteri...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Autor Corporativo: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
London :
Springer London : Imprint: Springer,
2006.
|
| Edición: | 1st ed. 2006. |
| Colección: | Springer Undergraduate Mathematics Series,
|
| Temas: | |
| Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Rings and Fields
- Integral Domains and Polynomials
- Field Extensions
- Applications to Geometry
- Splitting Fields
- Finite Fields
- The Galois Group
- Equations and Groups
- Some Group Theory
- Groups and Equations
- Regular Polygons
- Solutions.


