Cargando…

Fields and Galois Theory

The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Howie, John M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Springer Undergraduate Mathematics Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-181-5
003 DE-He213
005 20220114084811.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846281815  |9 978-1-84628-181-5 
024 7 |a 10.1007/978-1-84628-181-5  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Howie, John M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fields and Galois Theory  |h [electronic resource] /  |c by John M. Howie. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a X, 226 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
505 0 |a Rings and Fields -- Integral Domains and Polynomials -- Field Extensions -- Applications to Geometry -- Splitting Fields -- Finite Fields -- The Galois Group -- Equations and Groups -- Some Group Theory -- Groups and Equations -- Regular Polygons -- Solutions. 
520 |a The pioneering work of Abel and Galois in the early nineteenth century demonstrated that the long-standing quest for a solution of quintic equations by radicals was fruitless: no formula can be found. The techniques they used were, in the end, more important than the resolution of a somewhat esoteric problem, for they were the genesis of modern abstract algebra. This book provides a gentle introduction to Galois theory suitable for third- and fourth-year undergraduates and beginning graduates. The approach is unashamedly unhistorical: it uses the language and techniques of abstract algebra to express complex arguments in contemporary terms. Thus the insolubility of the quintic by radicals is linked to the fact that the alternating group of degree 5 is simple - which is assuredly not the way Galois would have expressed the connection. Topics covered include: rings and fields integral domains and polynomials field extensions and splitting fields applications to geometry finite fields the Galois group equations Group theory features in many of the arguments, and is fully explained in the text. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided. 
650 0 |a Algebra. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 1 4 |a Algebra. 
650 2 4 |a Field Theory and Polynomials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848008854 
776 0 8 |i Printed edition:  |z 9781852339869 
830 0 |a Springer Undergraduate Mathematics Series,  |x 2197-4144 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-181-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)