Cargando…

Data Complexity in Pattern Recognition

Machines capable of automatic pattern recognition have many fascinating uses in science and engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. Tremendous progre...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Basu, Mitra (Editor ), Ho, Tin Kam (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Advanced Information and Knowledge Processing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-172-3
003 DE-He213
005 20220116043501.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846281723  |9 978-1-84628-172-3 
024 7 |a 10.1007/978-1-84628-172-3  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Data Complexity in Pattern Recognition  |h [electronic resource] /  |c edited by Mitra Basu, Tin Kam Ho. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a XVI, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Information and Knowledge Processing,  |x 2197-8441 
505 0 |a Theory and Methodology -- Measures of Geometrical Complexity in Classification Problems -- Object Representation, Sample Size, and Data Set Complexity -- Measures of Data and Classifier Complexity and the Training Sample Size -- Linear Separability in Descent Procedures for Linear Classifiers -- Data Complexity, Margin-Based Learning, and Popper's Philosophy of Inductive Learning -- Data Complexity and Evolutionary Learning -- Classifier Domains of Competence in Data Complexity Space -- Data Complexity Issues in Grammatical Inference -- Applications -- Simple Statistics for Complex Feature Spaces -- Polynomial Time Complexity Graph Distance Computation for Web Content Mining -- Data Complexity in Clustering Analysis of Gene Microarray Expression Profiles -- Complexity of Magnetic Resonance Spectrum Classification -- Data Complexity in Tropical Cyclone Positioning and Classification -- Human-Computer Interaction for Complex Pattern Recognition Problems -- Complex Image Recognition and Web Security. 
520 |a Machines capable of automatic pattern recognition have many fascinating uses in science and engineering as well as in our daily lives. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. Tremendous progress has been made in refining such algorithms; yet, automatic learning in many simple tasks in daily life still appears to be far from reach. This book takes a close view of data complexity and its role in shaping the theories and techniques in different disciplines and asks: • What is missing from current classification techniques? • When the automatic classifiers are not perfect, is it a deficiency of the algorithms by design, or is it a difficulty intrinsic to the classification task? • How do we know whether we have exploited to the fullest extent the knowledge embedded in the training data? Data Complexity in Pattern Recognition is unique in its comprehensive coverage and multidisciplinary approach from various methodological and practical perspectives. Researchers and practitioners alike will find this book an insightful reference to learn about the current status of available techniques as well as application areas. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Algorithms. 
700 1 |a Basu, Mitra.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ho, Tin Kam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848004382 
776 0 8 |i Printed edition:  |z 9781849965576 
776 0 8 |i Printed edition:  |z 9781846281716 
776 0 8 |i Printed edition:  |z 9781447174585 
830 0 |a Advanced Information and Knowledge Processing,  |x 2197-8441 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84628-172-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)