Cargando…

Probabilistic and Randomized Methods for Design under Uncertainty

In many engineering design and optimization problems, the presence of uncertainty in the data is a central and critical issue. Different fields of engineering use different ways to describe this uncertainty and adopt a variety of techniques to devise designs that are at least partly insensitive or r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Calafiore, Giuseppe (Editor ), Dabbene, Fabrizio (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-095-5
003 DE-He213
005 20220116093336.0
007 cr nn 008mamaa
008 100301s2006 xxk| s |||| 0|eng d
020 |a 9781846280955  |9 978-1-84628-095-5 
024 7 |a 10.1007/b138725  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
245 1 0 |a Probabilistic and Randomized Methods for Design under Uncertainty  |h [electronic resource] /  |c edited by Giuseppe Calafiore, Fabrizio Dabbene. 
250 |a 1st ed. 2006. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2006. 
300 |a XIV, 458 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chance-Constrained and Stochastic Optimization -- Scenario Approximations of Chance Constraints -- Optimization Models with Probabilistic Constraints -- Theoretical Framework for Comparing Several Stochastic Optimization Approaches -- Optimization of Risk Measures -- Robust Optimization and Random Sampling -- Sampled Convex Programs and Probabilistically Robust Design -- Tetris: A Study of Randomized Constraint Sampling -- Near Optimal Solutions to Least-Squares Problems with Stochastic Uncertainty -- The Randomized Ellipsoid Algorithm for Constrained Robust Least Squares Problems -- Randomized Algorithms for Semi-Infinite Programming Problems -- Probabilistic Methods in Identification and Control -- A Learning Theory Approach to System Identification and Stochastic Adaptive Control -- Probabilistic Design of a Robust Controller Using a Parameter-Dependent Lyapunov Function -- Probabilistic Robust Controller Design: Probable Near Minimax Value and Randomized Algorithms -- Sampling Random Transfer Functions -- Nonlinear Systems Stability via Random and Quasi-Random Methods -- Probabilistic Control of Nonlinear Uncertain Systems -- Fast Randomized Algorithms for Probabilistic Robustness Analysis. 
520 |a In many engineering design and optimization problems, the presence of uncertainty in the data is a central and critical issue. Different fields of engineering use different ways to describe this uncertainty and adopt a variety of techniques to devise designs that are at least partly insensitive or robust to uncertainty. Probabilistic and Randomized Methods for Design under Uncertainty examines uncertain systems in control engineering and general decision or optimization problems for which data is not known exactly. Gathering contributions from the world's leading researchers in optimization and robust control; this book highlights the interactions between these two fields, and focuses on new randomised and probabilistic techniques for solving design problems in the presence of uncertainty: Part I describes general theory and solution methodologies for probability-constrained and stochastic optimization problems, including chance-constrained optimization, stochastic optimization and risk measures; Part II focuses on numerical methods for solving randomly perturbed convex programs and semi-infinite optimization problems by probabilistic techniques such as constraint sampling and scenario-based optimization; Part III details the theory and applications of randomized techniques to the analysis and design of robust control systems. Probabilistic and Randomized Methods for Design under Uncertainty will be of interest to researchers, academics and postgraduate students in control engineering and operations research as well as professionals working in operations research who are interested in decision-making, optimization and stochastic modeling. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Security systems. 
650 0 |a Operations research. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Security Science and Technology. 
650 2 4 |a Operations Research and Decision Theory. 
700 1 |a Calafiore, Giuseppe.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dabbene, Fabrizio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848004276 
776 0 8 |i Printed edition:  |z 9781849965521 
776 0 8 |i Printed edition:  |z 9781846280948 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138725  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)