Cargando…

Probabilistic Conditional Independence Structures

Conditional independence is a topic that lies between statistics and artificial intelligence. Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Studeny, Milan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Information Science and Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84628-083-2
003 DE-He213
005 20220116011628.0
007 cr nn 008mamaa
008 100301s2005 xxk| s |||| 0|eng d
020 |a 9781846280832  |9 978-1-84628-083-2 
024 7 |a 10.1007/b138557  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Studeny, Milan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Probabilistic Conditional Independence Structures  |h [electronic resource] /  |c by Milan Studeny. 
250 |a 1st ed. 2005. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 285 p. 42 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 2197-4128 
505 0 |a Basic Concepts -- Graphical Methods -- Structural Imsets: Fundamentals -- Description of Probabilistic Models -- Equivalence and Implication -- The Problem of Representative Choice -- Learning -- Open Problems. 
520 |a Conditional independence is a topic that lies between statistics and artificial intelligence. Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach. The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets. Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given. In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence. The necessary elementary mathematical notions are recalled in an appendix. Probabilistic Conditional Independence Structures will be a valuable new addition to the literature, and will interest applied mathematicians, statisticians, informaticians, computer scientists and probabilists with an interest in artificial intelligence. The book may also interest pure mathematicians as open problems are included. Milan Studený is a senior research worker at the Academy of Sciences of the Czech Republic. 
650 0 |a Artificial intelligence. 
650 0 |a Statistics . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849969482 
776 0 8 |i Printed edition:  |z 9781848008014 
776 0 8 |i Printed edition:  |z 9781852338916 
830 0 |a Information Science and Statistics,  |x 2197-4128 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138557  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)