Cargando…

Spatio-Temporal Data Streams

This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all differ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Galić, Zdravko (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-6575-5
003 DE-He213
005 20220113102308.0
007 cr nn 008mamaa
008 160826s2016 xxu| s |||| 0|eng d
020 |a 9781493965755  |9 978-1-4939-6575-5 
024 7 |a 10.1007/978-1-4939-6575-5  |2 doi 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.74  |2 23 
100 1 |a Galić, Zdravko.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spatio-Temporal Data Streams  |h [electronic resource] /  |c by Zdravko Galić. 
250 |a 1st ed. 2016. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 107 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Spatio-Temporal Continuous Queries -- Spatio-Temporal Data Streams and Big Data Paradigm -- Spatio-Temporal Data Stream Clustering. 
520 |a This SpringerBrief presents the fundamental concepts of a specialized class of data stream, spatio-temporal data streams, and demonstrates their distributed processing using Big Data frameworks and platforms. It explores a consistent framework which facilitates a thorough understanding of all different facets of the technology, from basic definitions to state-of-the-art techniques. Key topics include spatio-temporal continuous queries, distributed stream processing, SQL-like language embedding, and trajectory stream clustering. Over the course of the book, the reader will become familiar with spatio-temporal data streams management and data flow processing, which enables the analysis of huge volumes of location-aware continuous data streams. Applications range from mobile object tracking and real-time intelligent transportation systems to traffic monitoring and complex event processing. Spatio-Temporal Data Streams is a valuable resource for researchers studying spatio-temporal data streams and Big Data analytics, as well as data engineers and data scientists solving data management and analytics problems associated with this class of data. 
650 0 |a Database management. 
650 0 |a Geographic information systems. 
650 0 |a Computer networks . 
650 0 |a Graph theory. 
650 1 4 |a Database Management. 
650 2 4 |a Geographical Information System. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493965731 
776 0 8 |i Printed edition:  |z 9781493965748 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-6575-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)