Cargando…

Advances in Time Series Methods and Applications The A. Ian McLeod Festschrift /

This volume reviews and summarizes some of A. I. McLeod's significant contributions to time series analysis. It also contains original contributions to the field and to related areas by participants of the festschrift held in June 2014 and friends of Dr. McLeod. Covering a diverse range of stat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Li, Wai Keung (Editor ), Stanford, David A. (Editor ), Yu, Hao (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Fields Institute Communications, 78
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-6568-7
003 DE-He213
005 20230913135725.0
007 cr nn 008mamaa
008 161205s2016 xxu| s |||| 0|eng d
020 |a 9781493965687  |9 978-1-4939-6568-7 
024 7 |a 10.1007/978-1-4939-6568-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 300.727  |2 23 
245 1 0 |a Advances in Time Series Methods and Applications  |h [electronic resource] :  |b The A. Ian McLeod Festschrift /  |c edited by Wai Keung Li, David A. Stanford, Hao Yu. 
250 |a 1st ed. 2016. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 293 p. 37 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 2194-1564 ;  |v 78 
505 0 |a 1. Ian McLeod's Contribution to Time Series Analysis: a Tribute (W.K. Li) -- 2. The Doubly Adaptive LASSO for Vector Autoregressive Models (Z.Z. Liu, R. Kulperger, H. Yu) -- 3. On diagnostic checking autoregressive conditional duration models with wavelet-based spectral density estimators (P. Duchesne, Y. Hong) -- 4. Diagnostic checking for Weibull autoregressive conditional duration models (Y. Zheng, Y. Li, W.K. Li, G. Li) -- 5. Diagnostic checking for Partially Nonstationary Multivariate ARMA Models (M.T. Tai, Y.X. Yang, and S.Q. Ling) -- 6. The portmanteau tests and the LM test for ARMA models with uncorrelated errors (N. Katayama) -- 7. Generalized C(alpha) tests for estimating functions with serial dependence J.-M. Dufour, A. Tognon, P. Tuvaandorj) -- Regression Models for Ordinal Categorical Time Series Data (B.C. Sutradhar, R.P. Rao) -- 9. Identification of Threshold Autoregressive Moving Average Models (Q. Xia, H. Wong) -- 10. Improved Seasonal Mann-Kendall Tests for Trend Analysis in Water Resources Time Series (Y. Zhang, P. Cabilio and K. Nadeem) -- 11. A brief derivation of the asymptotic distribution of Pearson's statistic and an accurate approximation to its exact distribution (S.B. Provost) -- 12. Business Resilience during Power Shortages: A Power Saving Rate Measured by Power Consumption Time Series in Industrial Sector before and after the Great East Japan Earthquake in 2011 (Y. Kajitani) -- Atmospheric CO2 and global temperatures: the strength and nature of their dependence (G. Tunnicliffe Wilson) -- Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic Short-term Forecasting of Wind Speed (Y.R. Gel, V. Lyubchich, S.E. Ahmed). . 
520 |a This volume reviews and summarizes some of A. I. McLeod's significant contributions to time series analysis. It also contains original contributions to the field and to related areas by participants of the festschrift held in June 2014 and friends of Dr. McLeod. Covering a diverse range of state-of-the-art topics, this volume well balances applied and theoretical research across fourteen contributions by experts in the field. It will be of interest to researchers and practitioners in time series, econometricians, and graduate students in time series or econometrics, as well as environmental statisticians, data scientists, statisticians interested in graphical models, and researchers in quantitative risk management. 
650 0 |a Statistics . 
650 1 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
700 1 |a Li, Wai Keung.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stanford, David A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yu, Hao.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493965670 
776 0 8 |i Printed edition:  |z 9781493965694 
776 0 8 |i Printed edition:  |z 9781493982387 
830 0 |a Fields Institute Communications,  |x 2194-1564 ;  |v 78 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-6568-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)