Cargando…

A Course in Mathematical Statistics and Large Sample Theory

This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous present...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bhattacharya, Rabi (Autor), Lin, Lizhen (Autor), Patrangenaru, Victor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-4032-5
003 DE-He213
005 20220114131034.0
007 cr nn 008mamaa
008 160813s2016 xxu| s |||| 0|eng d
020 |a 9781493940325  |9 978-1-4939-4032-5 
024 7 |a 10.1007/978-1-4939-4032-5  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Bhattacharya, Rabi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Course in Mathematical Statistics and Large Sample Theory  |h [electronic resource] /  |c by Rabi Bhattacharya, Lizhen Lin, Victor Patrangenaru. 
250 |a 1st ed. 2016. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 389 p. 9 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a 1 Introduction -- 2 Decision Theory -- 3 Introduction to General Methods of Estimation -- 4 Sufficient Statistics, Exponential Families, and Estimation -- 5 Testing Hypotheses -- 6 Consistency and Asymptotic Distributions and Statistics -- 7 Large Sample Theory of Estimation in Parametric Models -- 8 Tests in Parametric and Nonparametric Models -- 9 The Nonparametric Bootstrap -- 10 Nonparametric Curve Estimation -- 11 Edgeworth Expansions and the Bootstrap -- 12 Frechet Means and Nonparametric Inference on Non-Euclidean Geometric Spaces -- 13 Multiple Testing and the False Discovery Rate -- 14 Markov Chain Monte Carlo (MCMC) Simulation and Bayes Theory -- 15 Miscellaneous Topics -- Appendices -- Solutions of Selected Exercises in Part 1. 
520 |a This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods. Large Sample theory with many worked examples, numerical calculations, and simulations to illustrate theory Appendices provide ready access to a number of standard results, with many proofs Solutions given to a number of selected exercises from Part I Part II exercises with a certain level of difficulty appear with detailed hints Rabi Bhattacharya, PhD,has held regular faculty positions at UC, Berkeley; Indiana University; and the University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics, including Nonparametric Inference on Manifolds, co-authored with A. Bhattacharya. Lizhen Lin, PhD, is Assistant Professor in the Department of Statistics and Data Science at the University of Texas at Austin. She received a PhD in Mathematics from the University of Arizona and was a Postdoctoral Associate at Duke University. Bayesian nonparametrics, shape constrained inference, and nonparametric inference on manifolds are among her areas of expertise. Vic Patrangenaru, PhD, is Professor of Statistics at Florida State University. He received PhDs in Mathematics from Haifa, Israel, and from Indiana University in the fields of differential geometry and statistics, respectively. He has many research publications on Riemannian geometry and especially on statistics on manifolds. He is a co-author with L. Ellingson of Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. . 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Probabilities. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Probability Theory. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Biostatistics. 
700 1 |a Lin, Lizhen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Patrangenaru, Victor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493940301 
776 0 8 |i Printed edition:  |z 9781493940318 
776 0 8 |i Printed edition:  |z 9781493981595 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-4032-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)