Cargando…

Advances in the Theory of Numbers Proceedings of the Thirteenth Conference of the Canadian Number Theory Association /

The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor)...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Alaca, Ayşe (Editor ), Alaca, Şaban (Editor ), Williams, Kenneth S. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Fields Institute Communications, 77
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-3201-6
003 DE-He213
005 20220119115136.0
007 cr nn 008mamaa
008 151028s2015 xxu| s |||| 0|eng d
020 |a 9781493932016  |9 978-1-4939-3201-6 
024 7 |a 10.1007/978-1-4939-3201-6  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Advances in the Theory of Numbers  |h [electronic resource] :  |b Proceedings of the Thirteenth Conference of the Canadian Number Theory Association /  |c edited by Ayşe Alaca, Şaban Alaca, Kenneth S. Williams. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 235 p. 15 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 2194-1564 ;  |v 77 
505 0 |a Preface -- List of lectures -- List of participants -- Identities for Logarithmic Means (B.C. Berndt, S. Kim) -- Universal Thickening of the Field of Real Numbers (A. Connes, C. Consani) -- Moments of Zeta and Correlations of Divisor-sums (B. Conrey, J.P. Keating) -- A Note on the Theorem of Maynard and Tao (T. Freiberg) -- A Prime Analogue of Roth's Theorem in Function Fields (Y.R. Liu, C.V. Spencer) -- The Distribution of Self-Fibonacci Divisors (F. Luca, E. Tron).Some Remarks on Automorphy and the Sato-Tate Conjecture (M.R. Murty, V.K. Murty) -- Division Polynomials with Galois Group SU3(3).2 = G2(2) (D.P. Roberts) -- A variant of Weyl's Inequality for Systems of Forms and Applications (D. Schindler) -- The Breuil-Schneider Conjecture, a Survey (C.M. Sorensen). 
520 |a The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers. 
650 0 |a Number theory. 
650 1 4 |a Number Theory. 
700 1 |a Alaca, Ayşe.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Alaca, Şaban.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Williams, Kenneth S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493932009 
776 0 8 |i Printed edition:  |z 9781493932023 
776 0 8 |i Printed edition:  |z 9781493949915 
830 0 |a Fields Institute Communications,  |x 2194-1564 ;  |v 77 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-3201-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)