Cargando…

Statistics and Data Analysis for Financial Engineering with R examples /

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and ana...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ruppert, David (Autor), Matteson, David S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2015.
Edición:2nd ed. 2015.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-2614-5
003 DE-He213
005 20220121022534.0
007 cr nn 008mamaa
008 150421s2015 xxu| s |||| 0|eng d
020 |a 9781493926145  |9 978-1-4939-2614-5 
024 7 |a 10.1007/978-1-4939-2614-5  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Ruppert, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistics and Data Analysis for Financial Engineering  |h [electronic resource] :  |b with R examples /  |c by David Ruppert, David S. Matteson. 
250 |a 2nd ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XXVI, 719 p. 221 illus., 108 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a Introduction -- Returns -- Fixed income securities -- Exploratory data analysis -- Modeling univariate distributions -- Resampling -- Multivariate statistical models -- Copulas -- Time series models: basics -- Time series models: further topics -- Portfolio theory -- Regression: basics -- Regression: troubleshooting -- Regression: advanced topics -- Cointegration -- The capital asset pricing model -- Factor models and principal components -- GARCH models -- Risk management -- Bayesian data analysis and MCMC -- Nonparametric regression and splines. 
520 |a The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. Financial engineers now have access to enormous quantities of data. To make use of these data, the powerful methods in this book, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, multivariate volatility and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest. David Ruppert is Andrew Schultz, Jr., Professor of Engineering and Professor of Statistical Science at Cornell University, where he teaches statistics and financial engineering and is a member of the Program in Financial Engineering. Professor Ruppert received his PhD in Statistics at Michigan State University. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and won the Wilcoxon prize. He is Editor of the Journal of the American Statistical Association-Theory and Methods and former Editor of the Electronic Journal of Statistics and of the Institute of Mathematical Statistics's Lecture Notes-Monographs. Professor Ruppert has published over 125 scientific papers and four books: Transformation and Weighting in Regression, Measurement Error in Nonlinear Models, Semiparametric Regression, and Statistics and Finance: An Introduction. David S. Matteson is Assistant Professor of Statistical Science at Cornell University, where he is a member of the ILR School, Center for Applied Mathematics, Field of Operations Research, and the Program in Financial Engineering, and teaches statistics and financial engineering. Professor Matteson received his PhD in Statistics at the University of Chicago. He received a CAREER Award from the National Science Foundation and won Best Academic Paper Awards from the annual R/Finance conference. He is an Associate Editor of the Journal of the American Statistical Association-Theory and Methods, Biometrics, and Statistica Sinica. He is also an Officer for the Business and Economic Statistics Section of the American Statistical Association, and a member of the Institute of Mathematical Statistics and the International Biometric Society. 
650 0 |a Statistics . 
650 0 |a Social sciences-Mathematics. 
650 0 |a Finance. 
650 1 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Financial Economics. 
700 1 |a Matteson, David S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493926152 
776 0 8 |i Printed edition:  |z 9781493926138 
776 0 8 |i Printed edition:  |z 9781493951734 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-2614-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)