Cargando…

Model Calibration and Parameter Estimation For Environmental and Water Resource Systems /

This three-part book provides a comprehensive and systematic introduction to the development of useful models for complex systems. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hype...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sun, Ne-Zheng (Autor), Sun, Alexander (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-2323-6
003 DE-He213
005 20220117224305.0
007 cr nn 008mamaa
008 150701s2015 xxu| s |||| 0|eng d
020 |a 9781493923236  |9 978-1-4939-2323-6 
024 7 |a 10.1007/978-1-4939-2323-6  |2 doi 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
072 7 |a TBJ  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Sun, Ne-Zheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Model Calibration and Parameter Estimation  |h [electronic resource] :  |b For Environmental and Water Resource Systems /  |c by Ne-Zheng Sun, Alexander Sun. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XXVIII, 621 p. 123 illus., 107 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- The Classical Inverse Problem -- The Gauss-Newton Method -- Multiobjective Inversion and Regularization -- Statistical Methods for Parameter Estimation -- Model Differentiation -- Model Dimension Reduction -- Development of Data-Driven Models -- Data Assimilation for Inversion -- Model Uncertainty Quantification -- Optimal Experimental Design -- Goal-Oriented Modeling. 
520 |a This three-part book provides a comprehensive and systematic introduction to the development of useful models for complex systems. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can useful for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for petroleum engineers, mining engineers, chemists, mechanical engineers, ecologists, biomedical engineers, applied mathematicians, and others who perform mathematical modeling. 
650 0 |a Mathematical models. 
650 0 |a Geology. 
650 0 |a Chemometrics. 
650 1 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Geology. 
650 2 4 |a Mathematical Applications in Chemistry. 
700 1 |a Sun, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493923229 
776 0 8 |i Printed edition:  |z 9781493923243 
776 0 8 |i Printed edition:  |z 9781493940929 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-2323-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)