Cargando…

Bayesian Networks in Educational Assessment

Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Almond, Russell G. (Autor), Mislevy, Robert J. (Autor), Steinberg, Linda S. (Autor), Yan, Duanli (Autor), Williamson, David M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2015.
Edición:1st ed. 2015.
Colección:Statistics for Social and Behavioral Sciences,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-2125-6
003 DE-He213
005 20220119032219.0
007 cr nn 008mamaa
008 150310s2015 xxu| s |||| 0|eng d
020 |a 9781493921256  |9 978-1-4939-2125-6 
024 7 |a 10.1007/978-1-4939-2125-6  |2 doi 
050 4 |a HA1-4737 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC027000  |2 bisacsh 
072 7 |a JHBC  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Almond, Russell G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Networks in Educational Assessment  |h [electronic resource] /  |c by Russell G. Almond, Robert J. Mislevy, Linda S. Steinberg, Duanli Yan, David M. Williamson. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XXXIII, 662 p. 155 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
505 0 |a Introduction -- An Introduction to Evidence-Centered Design -- Bayesian Probability and Statistics: a review -- Basic graph theory and graphical models -- Efficient calculations -- Some Example Networks -- Explanation and Test Construction -- Parameters for Bayesian Network Models -- Learning in Models with Fixed Structure -- Critiquing and Learning Model Structure -- An Illustrative Example -- The Conceptual Assessment Framework -- The Evidence Accumulation Process -- The Biomass Measurement Model -- The Future of Bayesian Networks in Educational Assessment -- Bayesian Network Resources -- References. 
520 |a Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets' foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume's grounding in Evidence-Centered Design (ECD) framework for assessment design. This "design forward" approach enables designers to take full advantage of Bayes nets' modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources. 
650 0 |a Social sciences-Statistical methods. 
650 0 |a Statistics . 
650 0 |a Artificial intelligence. 
650 1 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Mislevy, Robert J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Steinberg, Linda S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Yan, Duanli.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Williamson, David M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493921249 
776 0 8 |i Printed edition:  |z 9781493921263 
776 0 8 |i Printed edition:  |z 9781493938285 
830 0 |a Statistics for Social and Behavioral Sciences,  |x 2199-7365 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-2125-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)