Cargando…

An Introductory Course in Functional Analysis

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bowers, Adam (Autor), Kalton, Nigel J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-1945-1
003 DE-He213
005 20220115233446.0
007 cr nn 008mamaa
008 141211s2014 xxu| s |||| 0|eng d
020 |a 9781493919451  |9 978-1-4939-1945-1 
024 7 |a 10.1007/978-1-4939-1945-1  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Bowers, Adam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introductory Course in Functional Analysis  |h [electronic resource] /  |c by Adam Bowers, Nigel J. Kalton. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 232 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Foreword -- Preface -- 1 Introduction.- 2 Classical Banach spaces and their duals -- 3 The Hahn-Banach theorems.- 4 Consequences of completeness -- 5 Consequences of convexity -- 6 Compact operators and Fredholm theory -- 7 Hilbert space theory -- 8 Banach algebras -- A Basics of measure theory -- B Results from other areas of mathematics -- References -- Index. 
520 |a Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn-Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman-Pettis theorem. With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study. 
650 0 |a Functional analysis. 
650 1 4 |a Functional Analysis. 
700 1 |a Kalton, Nigel J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493919468 
776 0 8 |i Printed edition:  |z 9781493919444 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-1945-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)