Cargando…

Mathematical Models of Tumor-Immune System Dynamics

This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Eladdadi, Amina (Editor ), Kim, Peter (Editor ), Mallet, Dann (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Proceedings in Mathematics & Statistics, 107
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-1793-8
003 DE-He213
005 20220115201300.0
007 cr nn 008mamaa
008 141106s2014 xxu| s |||| 0|eng d
020 |a 9781493917938  |9 978-1-4939-1793-8 
024 7 |a 10.1007/978-1-4939-1793-8  |2 doi 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
072 7 |a TBJ  |2 thema 
082 0 4 |a 003.3  |2 23 
245 1 0 |a Mathematical Models of Tumor-Immune System Dynamics  |h [electronic resource] /  |c edited by Amina Eladdadi, Peter Kim, Dann Mallet. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a X, 275 p. 95 illus., 80 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 107 
505 0 |a Incorporating Asymmetric Stem Cell Division into the Roeder Model for Chronic Myeloid Leukemia -- A Cellular Automata and a Partial Differential Equation Model of Tumor-Immune Dynamics and Chemotaxis -- A Structured Population Model of Competition between Cancer Cells and T Cells under Immunotherapy -- Modeling Tumor-Immune Dynamics -- The Mathematics of Drug Delivery -- The Role of the miR-451-AMPK Signaling Pathway in Regulation of Cell Migration and Proliferation in Glioblastoma -- An Optimal Control Approach to Cancer Chemotherapy with Tumor-Immune System Interactions -- Negative feedback regulation in hierarchically organized tissues: Exploring the dynamics of tissue regeneration and the role of feedback escape in tumor development -- A Cellular Automata Model to Investigate Immune Cell-Tumor Cell Interactions in Growing Tumors in Two Spatial Dimensions -- Differential Equation Techniques for Modeling a Cycle-Specific Oncolytic Virotherapeutic. 
520 |a This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in  a variety of fields within mathematical and biological sciences. 
650 0 |a Mathematical models. 
650 0 |a Cancer. 
650 0 |a Dynamical systems. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Cancer Biology. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Mathematical Physics. 
700 1 |a Eladdadi, Amina.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kim, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mallet, Dann.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493917945 
776 0 8 |i Printed edition:  |z 9781493917921 
776 0 8 |i Printed edition:  |z 9781493947171 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1017 ;  |v 107 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-1793-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)