Cargando…

Statistical Methods for Ranking Data

This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Alvo, Mayer (Autor), Yu, Philip L.H (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Frontiers in Probability and the Statistical Sciences,
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors' website.
Descripción Física:XI, 273 p. 22 illus., 4 illus. in color. online resource.
ISBN:9781493914715
ISSN:2624-9995