Cargando…

Isospectral Transformations A New Approach to Analyzing Multidimensional Systems and Networks /

This book presents a new approach to the analysis of networks, which emphasizes how one can compress a network while preserving all information relative to the network's spectrum. This approach can be applied to any network irrespective of the network's structure or whether the network is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bunimovich, Leonid (Autor), Webb, Benjamin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-1375-6
003 DE-He213
005 20220112233859.0
007 cr nn 008mamaa
008 140903s2014 xxu| s |||| 0|eng d
020 |a 9781493913756  |9 978-1-4939-1375-6 
024 7 |a 10.1007/978-1-4939-1375-6  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Bunimovich, Leonid.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Isospectral Transformations  |h [electronic resource] :  |b A New Approach to Analyzing Multidimensional Systems and Networks /  |c by Leonid Bunimovich, Benjamin Webb. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 175 p. 51 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Isospectral Transformations: A New Approach to Analyzing Multidimensional Systems and Networks -- Isospectral Matrix Reductions -- Dynamical Networks and Isospectral Graph Reductions -- Stability of Dynamical Networks -- Improved Eigenvalue Estimates -- Pseudospectra and Inverse Pseudospectra -- Improved Estimates of Survival Probabilities. 
520 |a This book presents a new approach to the analysis of networks, which emphasizes how one can compress a network while preserving all information relative to the network's spectrum. This approach can be applied to any network irrespective of the network's structure or whether the network is directed, undirected, weighted, unweighted, etc. Besides these compression techniques, the authors introduce a number of other isospectral transformations and demonstrate how, together, these methods can be applied to gain new results in a number of areas. This includes the stability of time-delayed and non time-delayed dynamical networks, eigenvalue estimation, pseudospectra analysis, and the estimation of survival probabilities in open dynamical systems. The theory of isospectral transformations, developed in this text, can be readily applied in any area that involves the analysis of multidimensional systems and is especially applicable to the analysis of network dynamics. This book will be of interest to mathematicians, physicists, biologists, engineers and to anyone who has an interest in the dynamics of networks. 
650 0 |a Dynamical systems. 
650 0 |a Mathematical physics. 
650 0 |a System theory. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Complex Systems. 
700 1 |a Webb, Benjamin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493913763 
776 0 8 |i Printed edition:  |z 9781493913749 
776 0 8 |i Printed edition:  |z 9781493946006 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-1375-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)