Cargando…

The Corona Problem Connections Between Operator Theory, Function Theory, and Geometry /

The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Douglas, Ronald G. (Editor ), Krantz, Steven G. (Editor ), Sawyer, Eric T. (Editor ), Treil, Sergei (Editor ), Wick, Brett D. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Fields Institute Communications, 72
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-1255-1
003 DE-He213
005 20220120082000.0
007 cr nn 008mamaa
008 140805s2014 xxu| s |||| 0|eng d
020 |a 9781493912551  |9 978-1-4939-1255-1 
024 7 |a 10.1007/978-1-4939-1255-1  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
245 1 4 |a The Corona Problem  |h [electronic resource] :  |b Connections Between Operator Theory, Function Theory, and Geometry /  |c edited by Ronald G. Douglas, Steven G. Krantz, Eric T. Sawyer, Sergei Treil, Brett D. Wick. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 231 p. 5 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Communications,  |x 2194-1564 ;  |v 72 
505 0 |a The History of the Corona Problem (R.G. Douglas, S.G. Krantz, E.T. Sawyer, S. Treil, B.D. Wick) -- Corona Problem for H^\infty on Riemann Surfaces (A. Brudnyi) -- Connections of the Corona Problem with Operator Theory and Complex Geometry (R.G. Douglas) -- On the Maximal Ideal Space of a Sarason-Type Algebra on the Unit Ball (J. Eschmeier) -- A Subalgebra of the Hardy Algebra Relevant in Control Theory and its Algebraic-Analytic Properties (M. Frentz, A. Sasane) -- The Corona Problem in Several Complex Variables (S.G. Krantz) -- Corona-Type Theorems and Division in Some Function Algebras on Planar Domains (R. Mortini, R. Rupp) -- The Ring of Real-Valued Multivariate Polynomials: An Analyst's Perspective (R. Mortini, R. Rupp) -- Structure in the Spectra of Some Multiplier Algebras (R. Rochberg) -- Corona Solutions Depending Smoothly on Corona Data (S. Treil, B.D. Wick) -- On the Taylor Spectrum of M-Tuples of Analytic Toeplitz Operators on the Polydisk (T.T. Trent). 
520 |a The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed. There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematicians-both veterans and newcomers-will benefit from reading this book. This volume makes a unique contribution to the analysis literature and will be a valuable part of the canon for many years to come. 
650 0 |a Functions of complex variables. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 1 4 |a Functions of a Complex Variable. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
700 1 |a Douglas, Ronald G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Krantz, Steven G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sawyer, Eric T.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Treil, Sergei.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wick, Brett D.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493912568 
776 0 8 |i Printed edition:  |z 9781493912544 
776 0 8 |i Printed edition:  |z 9781493956012 
830 0 |a Fields Institute Communications,  |x 2194-1564 ;  |v 72 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-1255-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)