Cargando…

Stochastic Optimization in Insurance A Dynamic Programming Approach /

The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibilit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Azcue, Pablo (Autor), Muler, Nora (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:SpringerBriefs in Quantitative Finance,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-0995-7
003 DE-He213
005 20220120023822.0
007 cr nn 008mamaa
008 140619s2014 xxu| s |||| 0|eng d
020 |a 9781493909957  |9 978-1-4939-0995-7 
024 7 |a 10.1007/978-1-4939-0995-7  |2 doi 
050 4 |a H61.25 
072 7 |a PBW  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Azcue, Pablo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Stochastic Optimization in Insurance  |h [electronic resource] :  |b A Dynamic Programming Approach /  |c by Pablo Azcue, Nora Muler. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a X, 146 p. 19 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Quantitative Finance,  |x 2192-7014 
505 0 |a Stability Criteria for Insurance Companies -- Reinsurance and Investment -- Viscosity Solutions -- Characterization of Value Functions -- Optimal Strategies -- Numerical Examples -- References -- Appendix A. Probability Theory and Stochastic Processes -- Index. 
520 |a The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area. 
650 0 |a Social sciences-Mathematics. 
650 0 |a Probabilities. 
650 0 |a Financial services industry. 
650 1 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Probability Theory. 
650 2 4 |a Financial Services. 
700 1 |a Muler, Nora.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493909964 
776 0 8 |i Printed edition:  |z 9781493909940 
830 0 |a SpringerBriefs in Quantitative Finance,  |x 2192-7014 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-0995-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)