Cargando…

k-Schur Functions and Affine Schubert Calculus

This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern develo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lam, Thomas (Autor), Lapointe, Luc (Autor), Morse, Jennifer (Autor), Schilling, Anne (Autor), Shimozono, Mark (Autor), Zabrocki, Mike (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Fields Institute Monographs, 33
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-0682-6
003 DE-He213
005 20220126120841.0
007 cr nn 008mamaa
008 140605s2014 xxu| s |||| 0|eng d
020 |a 9781493906826  |9 978-1-4939-0682-6 
024 7 |a 10.1007/978-1-4939-0682-6  |2 doi 
050 4 |a QA297.4 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Lam, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a k-Schur Functions and Affine Schubert Calculus  |h [electronic resource] /  |c by Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono, Mike Zabrocki. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 219 p. 126 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Monographs,  |x 2194-3079 ;  |v 33 
505 0 |a 1. Introduction -- 2. Primer on k-Schur Functions -- 3. Stanley symmetric functions and Peterson algebras -- 4. Affine Schubert calculus. 
520 |a This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field. 
650 0 |a Discrete mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Algebraic topology. 
650 1 4 |a Discrete Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
700 1 |a Lapointe, Luc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Morse, Jennifer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Schilling, Anne.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shimozono, Mark.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zabrocki, Mike.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493906833 
776 0 8 |i Printed edition:  |z 9781493906819 
776 0 8 |i Printed edition:  |z 9781493949724 
830 0 |a Fields Institute Monographs,  |x 2194-3079 ;  |v 33 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-0682-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)