Cargando…

Marginal Space Learning for Medical Image Analysis Efficient Detection and Segmentation of Anatomical Structures /

Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Margin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zheng, Yefeng (Autor), Comaniciu, Dorin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-0600-0
003 DE-He213
005 20220118173136.0
007 cr nn 008mamaa
008 140416s2014 xxu| s |||| 0|eng d
020 |a 9781493906000  |9 978-1-4939-0600-0 
024 7 |a 10.1007/978-1-4939-0600-0  |2 doi 
050 4 |a TA1501-1820 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYT  |2 thema 
082 0 4 |a 006  |2 23 
100 1 |a Zheng, Yefeng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Marginal Space Learning for Medical Image Analysis  |h [electronic resource] :  |b Efficient Detection and Segmentation of Anatomical Structures /  |c by Yefeng Zheng, Dorin Comaniciu. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XX, 268 p. 122 illus., 58 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Marginal Space Learning -- Comparison of Marginal Space Learning and Full Space Learning in 2D -- Constrained Marginal Space Learning -- Part-Based Object Detection and Segmentation -- Optimal Mean Shape for Nonrigid Object Detection and Segmentation -- Nonrigid Object Segmentation: Application to Four-Chamber Heart Segmentation -- Applications of Marginal Space Learning in Medical Imaging -- Conclusions and Future Work. 
520 |a Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Radiology. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Radiology. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Comaniciu, Dorin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493906017 
776 0 8 |i Printed edition:  |z 9781493905997 
776 0 8 |i Printed edition:  |z 9781493955756 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-0600-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)