Cargando…

Recommender Systems for Technology Enhanced Learning Research Trends and Applications /

As an area, Technology Enhanced Learning (TEL) aims to design, develop and test socio-technical innovations that will support and enhance learning practices of individuals and organizations. Information retrieval is a pivotal activity in TEL and the deployment of recommender systems has attracted in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Manouselis, Nikos (Editor ), Drachsler, Hendrik (Editor ), Verbert, Katrien (Editor ), Santos, Olga C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-0530-0
003 DE-He213
005 20220116091418.0
007 cr nn 008mamaa
008 140412s2014 xxu| s |||| 0|eng d
020 |a 9781493905300  |9 978-1-4939-0530-0 
024 7 |a 10.1007/978-1-4939-0530-0  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Recommender Systems for Technology Enhanced Learning  |h [electronic resource] :  |b Research Trends and Applications /  |c edited by Nikos Manouselis, Hendrik Drachsler, Katrien Verbert, Olga C. Santos. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 306 p. 67 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Collaborative Filtering Recommendation of Educational Content in Social Environments utilizing Sentiment Analysis Techniques -- Towards automated evaluation of learning resources inside repositories -- Linked Data and the Social Web as facilitators for TEL recommender systems in research and practice -- The Learning Registry: Applying Social Metadata for Learning Resource Recommendations -- A Framework for Personalised Learning-Plan Recommendations in Game-Based Learning -- An approach for an Affective Educational Recommendation Model -- The Case for Preference-Inconsistent Recommendations -- Further Thoughts on Context-Aware Paper Recommendations for Education -- Towards a Social Trust-aware Recommender for Teachers -- ALEF: from Application to Platform for Adaptive Collaborative Learning -- Two Recommending Strategies to enhance Online Presence in Personal Learning Environments -- Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem -- COCOON CORE: CO-Author Recommendations based on Betweenness Centrality and Interest Similarity -- Scientific Recommendations to Enhance Scholarly Awareness and Foster Collaboration. 
520 |a As an area, Technology Enhanced Learning (TEL) aims to design, develop and test socio-technical innovations that will support and enhance learning practices of individuals and organizations. Information retrieval is a pivotal activity in TEL and the deployment of recommender systems has attracted increased interest during the past years. Recommendation methods, techniques and systems open an interesting new approach to facilitate and support learning and teaching. The goal is to develop, deploy and evaluate systems that provide learners and teachers with meaningful guidance in order to help identify suitable learning resources from a potentially overwhelming variety of choices. Contributions address the following topics: i) user and item data that can be used to support learning recommendation systems and scenarios, ii) innovative methods and techniques for recommendation purposes in educational settings and iii) examples of educational platforms and tools where recommendations are incorporated. 
650 0 |a Artificial intelligence. 
650 0 |a Education. 
650 0 |a Computer networks . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Education. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Manouselis, Nikos.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Drachsler, Hendrik.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Verbert, Katrien.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Santos, Olga C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493905317 
776 0 8 |i Printed edition:  |z 9781493905294 
776 0 8 |i Printed edition:  |z 9781493946563 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-0530-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)