Cargando…

Genetic Programming Theory and Practice XI

These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Riolo, Rick (Editor ), Moore, Jason H. (Editor ), Kotanchek, Mark (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Genetic and Evolutionary Computation,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-0375-7
003 DE-He213
005 20220116162007.0
007 cr nn 008mamaa
008 140401s2014 xxu| s |||| 0|eng d
020 |a 9781493903757  |9 978-1-4939-0375-7 
024 7 |a 10.1007/978-1-4939-0375-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Genetic Programming Theory and Practice XI  |h [electronic resource] /  |c edited by Rick Riolo, Jason H. Moore, Mark Kotanchek. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 227 p. 68 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation,  |x 1932-0175 
505 0 |a Extreme Accuracy in Symbolic Regression -- Exploring Interestingness in a Computational Evolution System for the Genome-Wide Genetic Analysis of Alzheimer's Disease -- Optimizing a Cloud Contract Portfolio using Genetic Programming-based Load Models -- Maintenance of a Long Running Distributed Genetic Programming System for Solving Problems Requiring Big Data -- Grounded Simulation: Using Simulated Evolution to Guide Embodied Evolution -- Applying Genetic Programming in Business Forecasting -- Explaining Unemployment Rates with Symbolic Regression -- Uniform Linear Transformation with Repair and Alternation in Genetic Programming -- A Deterministic and Symbolic Regression Hybrid Applied to Resting-State fMRI Data -- Gaining Deeper Insights in Symbolic Regression -- Geometric Semantic Genetic Programming for Real Life Applications -- Evaluation of Parameter Contribution to Neural Network Size and Fitness in ATHENA for Genetic Analysis. 
520 |a These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: evolutionary constraints, relaxation of selection mechanisms, diversity preservation strategies, flexing fitness evaluation, evolution in dynamic environments, multi-objective and multi-modal selection, foundations of evolvability, evolvable and adaptive evolutionary operators, foundation of injecting expert knowledge in evolutionary search, analysis of problem difficulty and required GP algorithm complexity, foundations in running GP on the cloud - communication, cooperation, flexible implementation, and ensemble methods. Additional focal points for GP symbolic regression are: (1) The need to guarantee convergence to solutions in the function discovery mode; (2) Issues on model validation; (3) The need for model analysis workflows for insight generation based on generated GP solutions - model exploration, visualization, variable selection, dimensionality analysis; (4) Issues in combining different types of data. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Computer programming. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Algorithms. 
650 2 4 |a Programming Techniques. 
700 1 |a Riolo, Rick.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Moore, Jason H.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kotanchek, Mark.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493903764 
776 0 8 |i Printed edition:  |z 9781493903740 
776 0 8 |i Printed edition:  |z 9781493955633 
830 0 |a Genetic and Evolutionary Computation,  |x 1932-0175 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4939-0375-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)