Cargando…

Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems /

The primary emphasis of this book is the modeling, analysis, and control of mechanical systems. The methods and results presented can be applied to a large class of mechanical control systems, including applications in robotics, autonomous vehicle control, and multi-body systems. The book is unique...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bullo, Francesco (Autor), Lewis, Andrew D. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Texts in Applied Mathematics, 49
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4899-7276-7
003 DE-He213
005 20220114213758.0
007 cr nn 008mamaa
008 131217s2005 xxu| s |||| 0|eng d
020 |a 9781489972767  |9 978-1-4899-7276-7 
024 7 |a 10.1007/978-1-4899-7276-7  |2 doi 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Bullo, Francesco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Control of Mechanical Systems  |h [electronic resource] :  |b Modeling, Analysis, and Design for Simple Mechanical Control Systems /  |c by Francesco Bullo, Andrew D. Lewis. 
250 |a 1st ed. 2005. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2005. 
300 |a XXIV, 727 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Applied Mathematics,  |x 2196-9949 ;  |v 49 
505 0 |a Part I: Modeling of mechanical systems; Introductory examples and problems; Linear and multilinear algebra; Differential geometry; Simple mechanical control systems; Lie groups, systems on groups, and symmetries -- Part II: Analysis of mechanical control systems; Stability; Controllability; Low-order controllability and kinematic reduction ; Perturbation analysis -- Part III: A sampling of design methodologies; Linear and nonlinear potential shaping for stabilization; Stabilization and tracking for fully actuated systems; Stabilization and tracking using oscillatory controls; Motion planning for underactuated systems; Appendices; Time-dependent vector fields; Some proofs. 
520 |a The primary emphasis of this book is the modeling, analysis, and control of mechanical systems. The methods and results presented can be applied to a large class of mechanical control systems, including applications in robotics, autonomous vehicle control, and multi-body systems. The book is unique in that it presents a unified, rather than an inclusive, treatment of control theory for mechanical systems. A distinctive feature of the presentation is its reliance on techniques from differential and Riemannian geometry. The book contains extensive examples and exercises, and will be suitable for a growing number of courses in this area. It begins with the detailed mathematical background, proceeding through innovative approaches to physical modeling, analysis, and design techniques. Numerous examples illustrate the proposed methods and results, while the many exercises test basic knowledge and introduce topics not covered in the main body of the text. The audience of this book consists of two groups. The first group is comprised of graduate students in engineering or mathematical sciences who wish to learn the basics of geometric mechanics, nonlinear control theory, and control theory for mechanical systems. Readers will be able to immediately begin exploring the research literature on these subjects. The second group consists of researchers in mechanics and control theory. Nonlinear control theoreticians will find explicit links between concepts in geometric mechanics and nonlinear control theory. Researchers in mechanics will find an overview of topics in control theory that have relevance to mechanics. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Mathematics. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Systems Theory, Control . 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Topological Groups and Lie Groups. 
700 1 |a Lewis, Andrew D.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441919687 
776 0 8 |i Printed edition:  |z 9780387221953 
776 0 8 |i Printed edition:  |z 9781489972774 
830 0 |a Texts in Applied Mathematics,  |x 2196-9949 ;  |v 49 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4899-7276-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)