Cargando…

Big Data SMACK A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka /

Integrate full-stack open-source fast data pipeline architecture and choose the correct technology-Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)-in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and cr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Estrada, Raul (Autor), Ruiz, Isaac (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4842-2175-4
003 DE-He213
005 20220512151515.0
007 cr nn 008mamaa
008 160929s2016 xxu| s |||| 0|eng d
020 |a 9781484221754  |9 978-1-4842-2175-4 
024 7 |a 10.1007/978-1-4842-2175-4  |2 doi 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Estrada, Raul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Big Data SMACK  |h [electronic resource] :  |b A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka /  |c by Raul Estrada, Isaac Ruiz. 
250 |a 1st ed. 2016. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2016. 
300 |a XXV, 264 p. 74 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part 1. Introduction -- Chapter 1. Big Data, Big Problems -- Chapter 2. Big Data, Big Solutions -- Part 2. Playing SMACK -- Chapter 3. The Language: Scala -- Chapter 4. The Model: Akka -- Chapter 5. Storage. Apache Cassandra -- Chapter 6. The View -- Chapter 7. The Manager: Apache Mesos -- Chapter 8. The Broker: Apache Kafka -- Part 3. Improving SMACK -- Chapter 9. Fast Data Patterns -- Chapter 10. Big Data Pipelines -- Chapter 11. Glossary. 
520 |a Integrate full-stack open-source fast data pipeline architecture and choose the correct technology-Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)-in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer: The engine: Apache Spark The container: Apache Mesos The model: Akka< The storage: Apache Cassandra The broker: Apache Kafka. 
650 0 |a Big data. 
650 0 |a Database management. 
650 0 |a Artificial intelligence-Data processing. 
650 1 4 |a Big Data. 
650 2 4 |a Database Management. 
650 2 4 |a Data Science. 
700 1 |a Ruiz, Isaac.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484221747 
776 0 8 |i Printed edition:  |z 9781484221761 
776 0 8 |i Printed edition:  |z 9781484284629 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4842-2175-4  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)