|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-1-4842-2175-4 |
003 |
DE-He213 |
005 |
20220512151515.0 |
007 |
cr nn 008mamaa |
008 |
160929s2016 xxu| s |||| 0|eng d |
020 |
|
|
|a 9781484221754
|9 978-1-4842-2175-4
|
024 |
7 |
|
|a 10.1007/978-1-4842-2175-4
|2 doi
|
050 |
|
4 |
|a QA76.9.B45
|
072 |
|
7 |
|a UN
|2 bicssc
|
072 |
|
7 |
|a COM021000
|2 bisacsh
|
072 |
|
7 |
|a UN
|2 thema
|
082 |
0 |
4 |
|a 005.7
|2 23
|
100 |
1 |
|
|a Estrada, Raul.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Big Data SMACK
|h [electronic resource] :
|b A Guide to Apache Spark, Mesos, Akka, Cassandra, and Kafka /
|c by Raul Estrada, Isaac Ruiz.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Berkeley, CA :
|b Apress :
|b Imprint: Apress,
|c 2016.
|
300 |
|
|
|a XXV, 264 p. 74 illus., 52 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Part 1. Introduction -- Chapter 1. Big Data, Big Problems -- Chapter 2. Big Data, Big Solutions -- Part 2. Playing SMACK -- Chapter 3. The Language: Scala -- Chapter 4. The Model: Akka -- Chapter 5. Storage. Apache Cassandra -- Chapter 6. The View -- Chapter 7. The Manager: Apache Mesos -- Chapter 8. The Broker: Apache Kafka -- Part 3. Improving SMACK -- Chapter 9. Fast Data Patterns -- Chapter 10. Big Data Pipelines -- Chapter 11. Glossary.
|
520 |
|
|
|a Integrate full-stack open-source fast data pipeline architecture and choose the correct technology-Spark, Mesos, Akka, Cassandra, and Kafka (SMACK)-in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses. Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer: The engine: Apache Spark The container: Apache Mesos The model: Akka< The storage: Apache Cassandra The broker: Apache Kafka.
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Artificial intelligence-Data processing.
|
650 |
1 |
4 |
|a Big Data.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Data Science.
|
700 |
1 |
|
|a Ruiz, Isaac.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484221747
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484221761
|
776 |
0 |
8 |
|i Printed edition:
|z 9781484284629
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-1-4842-2175-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-CWD
|
912 |
|
|
|a ZDB-2-SXPC
|
950 |
|
|
|a Professional and Applied Computing (SpringerNature-12059)
|
950 |
|
|
|a Professional and Applied Computing (R0) (SpringerNature-43716)
|