Cargando…

Pro Spark Streaming The Zen of Real-Time Analytics Using Apache Spark /

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nabi, Zubair (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4842-1479-4
003 DE-He213
005 20220512150251.0
007 cr nn 008mamaa
008 160613s2016 xxu| s |||| 0|eng d
020 |a 9781484214794  |9 978-1-4842-1479-4 
024 7 |a 10.1007/978-1-4842-1479-4  |2 doi 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Nabi, Zubair.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Pro Spark Streaming  |h [electronic resource] :  |b The Zen of Real-Time Analytics Using Apache Spark /  |c by Zubair Nabi. 
250 |a 1st ed. 2016. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2016. 
300 |a XIX, 230 p. 68 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: The Hitchhiker's Guide to Big Data -- Chapter 2: Introduction to Spark -- Chapter 3: DStreams: Realtime RDDs -- Chapter 4: High Velocity Streams: Parallelism and Other Stories -- Chapter 5: Real-time Route 66: Linking External Data Sources -- Chapter 6: The Art of Side Effects -- Chapter 7: Getting Ready for Prime Time -- Chapter 8: Real-time ETL and Analytics Magic -- Chapter 9: Machine Learning at Scale -- Chapter 10: Of Clouds, Lambdas, and Pythons. 
520 |a Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in Pro Spark Streaming include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming. What You'll Learn Discover Spark Streaming application development and best practices Work with the low-level details of discretized streams Optimize production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios Ingest data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver Integrate and couple with HBase, Cassandra, and Redis Take advantage of design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model Implement real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR Use streaming machine learning, predictive analytics, and recommendations Mesh batch processing with stream processing via the Lambda architecture Who This Book Is For Data scientists, big data experts, BI analysts, and data architects. 
650 0 |a Big data. 
650 0 |a Information technology-Management. 
650 0 |a Data mining. 
650 1 4 |a Big Data. 
650 2 4 |a Computer Application in Administrative Data Processing. 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484214800 
776 0 8 |i Printed edition:  |z 9781484214817 
776 0 8 |i Printed edition:  |z 9781484284391 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4842-1479-4  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)