Cargando…

Predictive Analytics with Microsoft Azure Machine Learning 2nd Edition

Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fontama, Valentine (Autor), Barga, Roger (Autor), Tok, Wee Hyong (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2015.
Edición:2nd ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4842-1200-4
003 DE-He213
005 20220124155952.0
007 cr nn 008mamaa
008 150826s2015 xxu| s |||| 0|eng d
020 |a 9781484212004  |9 978-1-4842-1200-4 
024 7 |a 10.1007/978-1-4842-1200-4  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Fontama, Valentine.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Predictive Analytics with Microsoft Azure Machine Learning 2nd Edition  |h [electronic resource] /  |c by Valentine Fontama, Roger Barga, Wee Hyong Tok. 
250 |a 2nd ed. 2015. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015. 
300 |a XXIII, 291 p. 227 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Predictive Analytics with Microsoft Azure Machine Learning, Second Edition is a practical tutorial introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book provides a thorough overview of the Microsoft Azure Machine Learning service released for general availability on February 18th, 2015 with practical guidance for building recommenders, propensity models, and churn and predictive maintenance models. The authors use task oriented descriptions and concrete end-to-end examples to ensure that the reader can immediately begin using this new service. The book describes all aspects of the service from data ingress to applying machine learning, evaluating the models, and deploying them as web services. Learn how you can quickly build and deploy sophisticated predictive models with the new Azure Machine Learning from Microsoft. What's New in the Second Edition? Five new chapters have been added with practical detailed coverage of: Python Integration - a new feature announced February 2015 Data preparation and feature selection Data visualization with Power BI Recommendation engines Selling your models on Azure Marketplace. 
650 0 |a Artificial intelligence. 
650 0 |a Software engineering. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Software Engineering. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Barga, Roger.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tok, Wee Hyong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484212011 
776 0 8 |i Printed edition:  |z 9781484212028 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4842-1200-4  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)