Cargando…

Numerical Python A Practical Techniques Approach for Industry /

Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical capabilities in Python, its standard library, and the extensive ecosystem of computationally oriented Python libraries, including popular packages such as NumPy, SciPy, SymPy, Matplotlib, Pandas, and more,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Johansson, Robert (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2015.
Edición:1st ed. 2015.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4842-0553-2
003 DE-He213
005 20230804135759.0
007 cr nn 008mamaa
008 151007s2015 xxu| s |||| 0|eng d
020 |a 9781484205532  |9 978-1-4842-0553-2 
024 7 |a 10.1007/978-1-4842-0553-2  |2 doi 
050 4 |a QA76.73.P98 
072 7 |a UMX  |2 bicssc 
072 7 |a COM051360  |2 bisacsh 
072 7 |a UMX  |2 thema 
082 0 4 |a 005.133  |2 23 
100 1 |a Johansson, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Python  |h [electronic resource] :  |b A Practical Techniques Approach for Industry /  |c by Robert Johansson. 
250 |a 1st ed. 2015. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2015. 
300 |a XXII, 487 p. 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction to computing with Python -- 2. Vectors, matrices and multidimensional arrays -- 3. Symbolic computing -- 4. Plotting and visualization -- 5. Equation solving -- 6. Optimization -- 7. Interpolation -- 8. Integration -- 9. Ordinary differential equations -- 10. Sparse matrices and graphs -- 11. Partial differential equations -- 12. Data processing and analysis -- 13. Statistics -- 14. Statistical modeling -- 15. Machine learning -- 16. Bayesian statistics -- 17. Signal and image processing -- 18. Data input and output -- 19. Code optimization -- 20. Appendix: Installation.-. 
520 |a Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical capabilities in Python, its standard library, and the extensive ecosystem of computationally oriented Python libraries, including popular packages such as NumPy, SciPy, SymPy, Matplotlib, Pandas, and more, and how to apply these software tools in computational problem solving. Python has gained widespread popularity as a computing language: It is nowadays employed for computing by practitioners in such diverse fields as for example scientific research, engineering, finance, and data analytics. One reason for the popularity of Python is its high-level and easy-to-work-with syntax, which enables the rapid development and exploratory computing that is required in modern computational work.              After reading and using this book, you will have seen examples and case studies from many areas of computing, and gained familiarity with basic computing techniques such as array-based and symbolic computing, all-around practical skills such as visualisation and numerical file I/O, general computat ional methods such as equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. Specific topics that are covered include:   How to work with vectors and matrices using NumPy How to work with symbolic computing using SymPy How to plot and visualize data with Matplotlib How to solve linear and nonlinear equations with SymPy and SciPy How to solve solve optimization, interpolation, and integration problems using SciPy How to solve ordinary and partial differential equations with SciPy and FEniCS How to perform data analysis tasks and solve statistical problems with Pandas and SciPy How to work with statistical modeling and machine learning with statsmodels and scikit-learn How to handle file I/O using HDF5 and other common file formats for numerical data How to optimize Python code using Numba and Cython. 
650 0 |a Python (Computer program language). 
650 0 |a Compilers (Computer programs). 
650 0 |a Computer software. 
650 1 4 |a Python. 
650 2 4 |a Compilers and Interpreters. 
650 2 4 |a Mathematical Software. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484205549 
776 0 8 |i Printed edition:  |z 9781484205556 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4842-0553-2  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)