Cargando…

Using R for Statistics

Using R for Statistics will get you the answers to most of the problems you are likely to encounter when using a variety of statistics. This book is a problem-solution primer for using R to set up your data, pose your problems and get answers using a wide array of statistical tests. The book walks y...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baldock, Sarah (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress : Imprint: Apress, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4842-0139-8
003 DE-He213
005 20220124155919.0
007 cr nn 008mamaa
008 140704s2014 xxu| s |||| 0|eng d
020 |a 9781484201398  |9 978-1-4842-0139-8 
024 7 |a 10.1007/978-1-4842-0139-8  |2 doi 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Baldock, Sarah.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Using R for Statistics  |h [electronic resource] /  |c by Sarah Baldock. 
250 |a 1st ed. 2014. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2014. 
300 |a XVI, 244 p. 129 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Using R for Statistics will get you the answers to most of the problems you are likely to encounter when using a variety of statistics. This book is a problem-solution primer for using R to set up your data, pose your problems and get answers using a wide array of statistical tests. The book walks you through R basics and how to use R to accomplish a wide variety statistical operations. You'll be able to navigate the R system, enter and import data, manipulate datasets, calculate summary statistics, create statistical plots and customize their appearance, perform hypothesis tests such as the t-tests and analyses of variance, and build regression models. Examples are built around actual datasets to simulate real-world solutions, and programming basics are explained to assist those who do not have a development background. After reading and using this guide, you'll be comfortable using and applying R to your specific statistical analyses or hypothesis tests. No prior knowledge of R or of programming is assumed, though you should have some experience with statistics. 
650 0 |a Big data. 
650 0 |a Software engineering. 
650 1 4 |a Big Data. 
650 2 4 |a Software Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484201404 
776 0 8 |i Printed edition:  |z 9781484201411 
776 0 8 |i Printed edition:  |z 9781484257074 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4842-0139-8  |z Texto Completo 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)