Cargando…

Introduction to Stochastic Integration

A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability.   Usin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chung, K.L (Autor), Williams, R.J (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Birkhäuser, 2014.
Edición:2nd ed. 2014.
Colección:Modern Birkhäuser Classics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-9587-1
003 DE-He213
005 20220119062301.0
007 cr nn 008mamaa
008 131109s2014 xxu| s |||| 0|eng d
020 |a 9781461495871  |9 978-1-4614-9587-1 
024 7 |a 10.1007/978-1-4614-9587-1  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Chung, K.L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Stochastic Integration  |h [electronic resource] /  |c by K.L. Chung, R.J. Williams. 
250 |a 2nd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XVII, 276 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Modern Birkhäuser Classics,  |x 2197-1811 
505 0 |a 1 Preliminaries -- 2 Definition of the Stochastic Integral -- 3 Extension of the Predictable Integrands -- 4 Quadratic Variation Process -- 5 The Ito Formula -- 6 Applications of the Ito Formula -- 7 Local Time and Tanaka's Formula -- 8 Reflected Brownian Motions -- 9 Generalization Ito Formula, Change of Time and Measure -- 10 Stochastic Differential Equations -- References -- Index. 
520 |a A highly readable introduction to stochastic integration and stochastic differential equations, this book combines developments of the basic theory with applications. It is written in a style suitable for the text of a graduate course in stochastic calculus, following a course in probability.   Using the modern approach, the stochastic integral is defined for predictable integrands and local martingales; then Itô's change of variable formula is developed for continuous martingales. Applications include a characterization of Brownian motion, Hermite polynomials of martingales, the Feynman-Kac functional and the Schrödinger equation. For Brownian motion, the topics of local time, reflected Brownian motion, and time change are discussed.   New to the second edition are a discussion of the Cameron-Martin-Girsanov transformation and a final chapter which provides an introduction to stochastic differential equations, as well as many exercises for classroom use.   This book will be a valuable resource to all mathematicians, statisticians, economists, and engineers employing the modern tools of stochastic analysis.   The text also proves that stochastic integration has made an important impact on mathematical progress over the last decades and that stochastic calculus has become one of the most powerful tools in modern probability theory. -Journal of the American Statistical Association     An attractive text...written in [a] lean and precise style...eminently readable. Especially pleasant are the care and attention devoted to details... A very fine book. -Mathematical Reviews  . 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
700 1 |a Williams, R.J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461495888 
776 0 8 |i Printed edition:  |z 9781461495864 
830 0 |a Modern Birkhäuser Classics,  |x 2197-1811 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-9587-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)