Cargando…

Nonparametric Statistics for Applied Research

Non-parametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four stars). The use of non-parametric methods may be necessary when data have a ranking but no clear numerical interpretation, such as when assessing preferences. In t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Linebach, Jared A. (Autor), Tesch, Brian P. (Autor), Kovacsiss, Lea M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-9041-8
003 DE-He213
005 20220118071241.0
007 cr nn 008mamaa
008 131115s2014 xxu| s |||| 0|eng d
020 |a 9781461490418  |9 978-1-4614-9041-8 
024 7 |a 10.1007/978-1-4614-9041-8  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Linebach, Jared A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonparametric Statistics for Applied Research  |h [electronic resource] /  |c by Jared A. Linebach, Brian P. Tesch, Lea M. Kovacsiss. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 408 p. 23 illus., 17 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Meeting the Team -- Questions, Assumptions, and Decisions.- Understanding Similarity -- The Bourgeoisie, the Proletariat, and an Unwelcomed Press Conference -- Agreeing to Disagree -- Guesstimating the Fluffy-Maker -- X Marks the Spot Revisited -- Let My People Go! -- Here's Your Sign and the Neighborhood Bowling League -- Geometry on Steroids -- Crunch Time.- Presentation. . 
520 |a Non-parametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four stars). The use of non-parametric methods may be necessary when data have a ranking but no clear numerical interpretation, such as when assessing preferences. In terms of levels of measurement, non-parametric methods result in "ordinal" data. As non-parametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, non-parametric methods are more robust. Non-parametric methods have many popular applications, and are widely used in research in the fields of the  behavioral sciences and biomedicine. This is a textbook  on non-parametric statistics for applied research. The authors propose to use a realistic yet mostly fictional situation and series of dialogues to illustrate in detail the statistical processes required to complete data analysis.  This book draws on a readers existing elementary knowledge of statistical analyses to broaden his/her research capabilities.  The material within the book is covered in such a way that someone with a very limited knowledge of statistics would be able to read and understand the concepts detailed in the text. The "real world" scenario to be presented involves a multidisciplinary team of behavioral, medical, crime analysis, and policy analysis professionals work together to answer specific empirical questions regarding real-world applied problems.  The reader is introduced to the team and the data set, and through the course of the text follows the team as they progress through the decision making process of narrowing the data and the research questions to answer the applied problem.  In this way, abstract statistical concepts are translated into concrete and specific language. This text uses one data set from which all examples are taken.  This is radically different from other statistics books which provide a varied array of examples and data sets.  Using only one data set facilitates reader-directed teaching and learning by providing multiple research questions which are integrated rather than using disparate examples and completely unrelated research questions and data. 
650 0 |a Statistics . 
650 0 |a Social sciences-Statistical methods. 
650 0 |a Biometry. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Biostatistics. 
700 1 |a Tesch, Brian P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kovacsiss, Lea M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461490401 
776 0 8 |i Printed edition:  |z 9781461490425 
776 0 8 |i Printed edition:  |z 9781493953943 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-9041-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)