Cargando…

Statistical Modeling and Computation

This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kroese, Dirk P. (Autor), C.C. Chan, Joshua (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8775-3
003 DE-He213
005 20230810160901.0
007 cr nn 008mamaa
008 131114s2014 xxu| s |||| 0|eng d
020 |a 9781461487753  |9 978-1-4614-8775-3 
024 7 |a 10.1007/978-1-4614-8775-3  |2 doi 
050 4 |a QA276.4-.45 
072 7 |a PBT  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Kroese, Dirk P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Modeling and Computation  |h [electronic resource] /  |c by Dirk P. Kroese, Joshua C.C. Chan. 
250 |a 1st ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XX, 400 p. 114 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Probability Models -- Random Variables and Probability Distributions -- Joint Distributions -- Common Statistical Models -- Statistical Inference -- Likelihood -- Monte Carlo Sampling -- Bayesian Inference -- Generalized Linear Models -- Dependent Data Models -- State Space Models -- References -- Solutions -- MATLAB Primer -- Mathematical Supplement -- Index. 
520 |a This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement. 
650 0 |a Mathematical statistics  |x Data processing. 
650 0 |a Biometry. 
650 0 |a Statistics . 
650 1 4 |a Statistics and Computing. 
650 2 4 |a Biostatistics. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a C.C. Chan, Joshua.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461487746 
776 0 8 |i Printed edition:  |z 9781461487760 
776 0 8 |i Printed edition:  |z 9781493953325 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8775-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)