Cargando…

Geodesic Convexity in Graphs

Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pelayo, Ignacio M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8699-2
003 DE-He213
005 20220117161408.0
007 cr nn 008mamaa
008 130906s2013 xxu| s |||| 0|eng d
020 |a 9781461486992  |9 978-1-4614-8699-2 
024 7 |a 10.1007/978-1-4614-8699-2  |2 doi 
050 4 |a QA166-166.247 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT013000  |2 bisacsh 
072 7 |a PBV  |2 thema 
082 0 4 |a 511.5  |2 23 
100 1 |a Pelayo, Ignacio M.  |e author.  |0 (orcid)0000-0002-6523-0611  |1 https://orcid.org/0000-0002-6523-0611  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geodesic Convexity in Graphs  |h [electronic resource] /  |c by Ignacio M. Pelayo. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 112 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
520 |a Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two  invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate course in geodesic convexity but is primarily a guide for postgraduates and researchers interested in topics related to metric graph theory and graph convexity theory.  . 
650 0 |a Graph theory. 
650 0 |a Geometry, Differential. 
650 0 |a Differential equations. 
650 1 4 |a Graph Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461487005 
776 0 8 |i Printed edition:  |z 9781461486985 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8699-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)