Cargando…

Bayesian Essentials with R

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marin, Jean-Michel (Autor), Robert, Christian P. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:2nd ed. 2014.
Colección:Springer Texts in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8687-9
003 DE-He213
005 20220118083242.0
007 cr nn 008mamaa
008 131028s2014 xxu| s |||| 0|eng d
020 |a 9781461486879  |9 978-1-4614-8687-9 
024 7 |a 10.1007/978-1-4614-8687-9  |2 doi 
050 4 |a QA276.4-.45 
072 7 |a PBT  |2 bicssc 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Marin, Jean-Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Essentials with R  |h [electronic resource] /  |c by Jean-Michel Marin, Christian P. Robert. 
250 |a 2nd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 296 p. 75 illus., 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a User's Manual -- Normal Models -- Regression and Variable Selection -- Generalized Linear Models -- Capture-Recapture Experiments -- Mixture Models -- Time Series -- Image Analysis -- References -- Index. 
520 |a This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. The stakes are high and the reader determines the outcome. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. This works in conjunction with the bayess package. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels, as exemplified by courses given at Université Paris Dauphine (France), University of Canterbury (New Zealand), and University of British Columbia (Canada). It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. A strength of the text is the noteworthy emphasis on the role of models in statistical analysis. This is the new, fully-revised edition to the book Bayesian Core: A Practical Approach to Computational Bayesian Statistics. . 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Statistics . 
650 1 4 |a Statistics and Computing. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Robert, Christian P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461486886 
776 0 8 |i Printed edition:  |z 9781461486862 
776 0 8 |i Printed edition:  |z 9781493950492 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8687-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)