Cargando…

Coherent States, Wavelets, and Their Generalizations

This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, she...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Ali, Syed Twareque (Autor), Antoine, Jean-Pierre (Autor), Gazeau, Jean-Pierre (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2014.
Edición:2nd ed. 2014.
Colección:Theoretical and Mathematical Physics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8535-3
003 DE-He213
005 20220119122948.0
007 cr nn 008mamaa
008 131030s2014 xxu| s |||| 0|eng d
020 |a 9781461485353  |9 978-1-4614-8535-3 
024 7 |a 10.1007/978-1-4614-8535-3  |2 doi 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
072 7 |a PHQ  |2 thema 
082 0 4 |a 530.12  |2 23 
100 1 |a Ali, Syed Twareque.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Coherent States, Wavelets, and Their Generalizations  |h [electronic resource] /  |c by Syed Twareque Ali, Jean-Pierre Antoine, Jean-Pierre Gazeau. 
250 |a 2nd ed. 2014. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 577 p. 31 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 1864-5887 
505 0 |a Canonical Coherent States -- Positive Operator-Valued Measures and Frames -- Some Group Theory -- Hilbert Spaces -- Square Integrable and Holomorphic Kernels -- Covariant Coherent States -- Coherent States from Square Integrable Representations -- Some Examples and Generalizations -- CS of General Semidirect Product Groups -- CS of Product Groups -- CS Quantizations and Probabilistic Aspects -- Direct Wavelet Transforms -- Multidimensional Wavelets -- Wavelets Related to Other G Groups -- The Discretization Problem - Frames Sampling and All That. 
520 |a This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics.   Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing.   Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable. 
650 0 |a Quantum physics. 
650 0 |a Group theory. 
650 0 |a Spintronics. 
650 1 4 |a Quantum Physics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Spintronics. 
700 1 |a Antoine, Jean-Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Gazeau, Jean-Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461485346 
776 0 8 |i Printed edition:  |z 9781461485360 
776 0 8 |i Printed edition:  |z 9781493950256 
830 0 |a Theoretical and Mathematical Physics,  |x 1864-5887 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8535-3  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)