Cargando…

Hermitian Analysis From Fourier Series to Cauchy-Riemann Geometry /

Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: D'Angelo, John P. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Cornerstones,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8526-1
003 DE-He213
005 20220117171849.0
007 cr nn 008mamaa
008 130924s2013 xxu| s |||| 0|eng d
020 |a 9781461485261  |9 978-1-4614-8526-1 
024 7 |a 10.1007/978-1-4614-8526-1  |2 doi 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.2433  |2 23 
100 1 |a D'Angelo, John P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hermitian Analysis  |h [electronic resource] :  |b From Fourier Series to Cauchy-Riemann Geometry /  |c by John P. D'Angelo. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a X, 203 p. 27 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cornerstones,  |x 2197-1838 
505 0 |a Preface -- Introduction to Fourier series -- Hilbert spaces -- Fourier transform on R -- Geometric considerations -- Appendix -- References -- Index. . 
520 |a Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric considerations in several complex variables. The final chapter includes complex differential forms, geometric inequalities from one and several complex variables, finite unitary groups, proper mappings, and naturally leads to the Cauchy-Riemann geometry of the unit sphere. The book thus takes the reader from the unit circle to the unit sphere. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. It will also be useful for students in physics and engineering, as it includes topics in harmonic analysis arising in these subjects. The inclusion of an appendix and more than 270 exercises makes this book suitable for a capstone undergraduate Honors class. 
650 0 |a Fourier analysis. 
650 0 |a Geometry, Differential. 
650 0 |a Differential equations. 
650 1 4 |a Fourier Analysis. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461485278 
776 0 8 |i Printed edition:  |z 9781461485254 
776 0 8 |i Printed edition:  |z 9781493948987 
830 0 |a Cornerstones,  |x 2197-1838 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8526-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)