Stability of Functional Equations in Random Normed Spaces
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hye...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Springer New York : Imprint: Springer,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Springer Optimization and Its Applications,
86 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Preface
- 1. Preliminaries
- 2. Generalized Spaces
- 3. Stability of Functional Equations in Random Normed Spaces Under Special t-norms
- 4. Stability of Functional Equations in Random Normed Spaces Under Arbitrary t-norms
- 5. Stability of Functional Equations in random Normed Spaces via Fixed Point Method
- 6. Stability of Functional Equations in Non-Archimedean Random Spaces
- 7. Random Stability of Functional Equations Related to Inner Product Spaces
- 8. Random Banach Algebras and Stability Results.