Cargando…

Stability of Functional Equations in Random Normed Spaces

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hye...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cho, Yeol Je (Autor), Rassias, Themistocles M. (Autor), Saadati, Reza (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Optimization and Its Applications, 86
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Preface
  • 1. Preliminaries
  • 2. Generalized Spaces
  • 3. Stability of Functional Equations in Random Normed Spaces Under Special t-norms
  • 4. Stability of Functional Equations in Random Normed Spaces Under Arbitrary t-norms
  • 5. Stability of Functional Equations in random Normed Spaces via Fixed Point Method
  • 6. Stability of Functional Equations in Non-Archimedean Random Spaces
  • 7. Random Stability of Functional Equations Related to Inner Product Spaces
  • 8. Random Banach Algebras and Stability Results.