Cargando…

Lie Groups

This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bump, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:2nd ed. 2013.
Colección:Graduate Texts in Mathematics, 225
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-8024-2
003 DE-He213
005 20220818072200.0
007 cr nn 008mamaa
008 131001s2013 xxu| s |||| 0|eng d
020 |a 9781461480242  |9 978-1-4614-8024-2 
024 7 |a 10.1007/978-1-4614-8024-2  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Bump, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lie Groups  |h [electronic resource] /  |c by Daniel Bump. 
250 |a 2nd ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIII, 551 p. 90 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 225 
505 0 |a Part I: Compact Topological Groups -- 1 Haar Measure -- 2 Schur Orthogonality -- 3 Compact Operators -- 4 The Peter-Weyl Theorem -- Part II: Compact Lie Groups -- 5 Lie Subgroups of GL(n,C) -- 6 Vector Fields -- 7 Left-Invariant Vector Fields -- 8 The Exponential Map -- 9 Tensors and Universal Properties -- 10 The Universal Enveloping Algebra -- 11 Extension of Scalars -- 12 Representations of sl(2,C) -- 13 The Universal Cover -- 14 The Local Frobenius Theorem -- 15 Tori -- 16 Geodesics and Maximal Tori -- 17 The Weyl Integration Formula -- 18 The Root System -- 19 Examples of Root Systems -- 20 Abstract Weyl Groups -- 21 Highest Weight Vectors -- 22 The Weyl Character Formula -- 23 The Fundamental Group -- Part III: Noncompact Lie Groups -- 24 Complexification -- 25 Coxeter Groups -- 26 The Borel Subgroup -- 27 The Bruhat Decomposition -- 28 Symmetric Spaces -- 29 Relative Root Systems -- 30 Embeddings of Lie Groups -- 31 Spin -- Part IV: Duality and Other Topics -- 32 Mackey Theory -- 33 Characters of GL(n,C) -- 34 Duality between Sk and GL(n,C) -- 35 The Jacobi-Trudi Identity -- 36 Schur Polynomials and GL(n,C) -- 37 Schur Polynomials and Sk. 38 The Cauchy Identity -- 39 Random Matrix Theory -- 40 Symmetric Group Branching Rules and Tableaux -- 41 Unitary Branching Rules and Tableaux -- 42 Minors of Toeplitz Matrices -- 43 The Involution Model for Sk -- 44 Some Symmetric Alegras -- 45 Gelfand Pairs -- 46 Hecke Algebras -- 47 The Philosophy of Cusp Forms -- 48 Cohomology of Grassmannians -- Appendix: Sage -- References -- Index. 
520 |a This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter-Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius-Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Topological Groups and Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461480235 
776 0 8 |i Printed edition:  |z 9781461480259 
776 0 8 |i Printed edition:  |z 9781493938421 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 225 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-8024-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)