Cargando…

Algebraic Theory of Quadratic Numbers

By focusing on quadratic numbers, this advanced undergraduate or master's level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove imp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Trifković, Mak (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-7717-4
003 DE-He213
005 20220117213539.0
007 cr nn 008mamaa
008 130914s2013 xxu| s |||| 0|eng d
020 |a 9781461477174  |9 978-1-4614-7717-4 
024 7 |a 10.1007/978-1-4614-7717-4  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Trifković, Mak.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Theory of Quadratic Numbers  |h [electronic resource] /  |c by Mak Trifković. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 197 p. 29 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a 1 Examples -- 2 A Crash Course in Ring Theory -- 3 Lattices -- 4 Arithmetic in Q[√D] -- 5 The Ideal Class Group and Geometry of Numbers -- 6 Continued Fractions -- 7 Quadratic Forms -- Appendix -- Hints to Selected Exercises -- Index. 
520 |a By focusing on quadratic numbers, this advanced undergraduate or master's level textbook on algebraic number theory is accessible even to students who have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group.  The book concludes with two topics particular to quadratic fields: continued fractions and quadratic forms.  The treatment of quadratic forms is somewhat more advanced  than usual, with an emphasis on their connection with ideal classes and a discussion of Bhargava cubes. The numerous exercises in the text offer the reader hands-on computational experience with elements and ideals in quadratic number fields.  The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.  Prerequisites include elementary number theory and a basic familiarity with ring theory. 
650 0 |a Number theory. 
650 0 |a Algebra. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461477167 
776 0 8 |i Printed edition:  |z 9781461477181 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-7717-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)