Cargando…

Statistical Methods for Dynamic Treatment Regimes Reinforcement Learning, Causal Inference, and Personalized Medicine /

Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chakraborty, Bibhas (Autor), Moodie, Erica E.M (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Statistics for Biology and Health, 76
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-7428-9
003 DE-He213
005 20220113001502.0
007 cr nn 008mamaa
008 130722s2013 xxu| s |||| 0|eng d
020 |a 9781461474289  |9 978-1-4614-7428-9 
024 7 |a 10.1007/978-1-4614-7428-9  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
100 1 |a Chakraborty, Bibhas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistical Methods for Dynamic Treatment Regimes  |h [electronic resource] :  |b Reinforcement Learning, Causal Inference, and Personalized Medicine /  |c by Bibhas Chakraborty, Erica E.M. Moodie. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVI, 204 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 2197-5671 ;  |v 76 
505 0 |a Introduction -- The Data: Observational Studies and Sequentially Randomized Trials -- Statistical Reinforcement Learning -- Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes -- Estimation of Optimal DTRs by Directly Modeling Regimes -- G-computation: Parametric Estimation of Optimal DTRs -- Estimation DTRs for Alternative Outcome Types -- Inference and Non-regularity -- Additional Considerations and Final Thoughts -- Glossary -- Index -- References. 
520 |a Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies. 
650 0 |a Biometry. 
650 0 |a Statistics . 
650 0 |a Medical informatics. 
650 1 4 |a Biostatistics. 
650 2 4 |a Statistics. 
650 2 4 |a Health Informatics. 
700 1 |a Moodie, Erica E.M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461474272 
776 0 8 |i Printed edition:  |z 9781461474296 
776 0 8 |i Printed edition:  |z 9781489990303 
830 0 |a Statistics for Biology and Health,  |x 2197-5671 ;  |v 76 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-7428-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)