Cargando…

Nonconvex Optimal Control and Variational Problems

Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zaslavski, Alexander J. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer New York : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Optimization and Its Applications, 82
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4614-7378-7
003 DE-He213
005 20220115055336.0
007 cr nn 008mamaa
008 130611s2013 xxu| s |||| 0|eng d
020 |a 9781461473787  |9 978-1-4614-7378-7 
024 7 |a 10.1007/978-1-4614-7378-7  |2 doi 
050 4 |a QA402.5-402.6 
050 4 |a QA315-316 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
082 0 4 |a 515.64  |2 23 
100 1 |a Zaslavski, Alexander J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonconvex Optimal Control and Variational Problems  |h [electronic resource] /  |c by Alexander J. Zaslavski. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 378 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 82 
505 0 |a Preface -- 1. Introduction -- 2. Well-posedness of Optimal Control Problems -- 3. Well-posedness and Porosity -- 4. Well-posedness of Nonconvex Variational Problems -- 5. Gerenic Well-posedness result -- 6. Nonoccurrence of the Lavrentiev Phenomenon for Variational Problems -- 7. Nonoccurrence of the Lavrentiev Phenomenon in Optimal Control -- 8. Generic Nonoccurrence of the Lavrentiev phenomenon -- 9. Infinite Dimensional Linear Control Problems -- 10. Uniform Boundedness of Approximate Solutions of Variational Problems -- 11. The Turnpike Property for Approximate Solutions -- 12. A Turnpike Result For Optimal Control Systems. - References -- Index. 
520 |a Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with "good" functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community. Also by Alexander J. Zaslavski: Optimization on Metric and Normed Spaces, © 2010; Structure of Solutions of Variational Problems, © 2013; Turnpike Properties in the Calculus of Variations and Optimal Control, © 2006. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 1 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461473794 
776 0 8 |i Printed edition:  |z 9781489996220 
776 0 8 |i Printed edition:  |z 9781461473770 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 82 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-4614-7378-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)